After following a chat room discussion on process safety, I find myself mixed on the matter of what is called green chemistry. In the present example, a fellow wanted to methylate a phenol but didn’t want to use dimethylsulfate or some similar methylating agent. He wanted something that was “green”.
Suggestions were varied, including a recommendation on the use of dimethyl carbonate as methylating agent and a few other approaches through aromatic substitution. One contributor wisely reminded contributors about going into the weeds with low atom efficiency.
“Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green chemistry applies across the life cycle of a chemical product, including its design, manufacture, use, and ultimate disposal. Green chemistry is also known as sustainable chemistry.” -EPA
When green organic chemistry is the goal in synthesis, it pays to be sure that there is an accepted definition of green chemistry on site. The merits and definitions are explained elsewhere. Difficult questions come up when a non-green substance is replaced with something that may be “more green” but needs 2 steps instead of 1. Or when green but more expensive reagents and solvents are needed. What is best? In this case, greater safety, lower cost, higher space yields, reduced waste generation, and fastest reaction times will be the real drivers. The business to business market will not pay more for a green product while a cheaper non-green alternative is present. If you want to get an existing customer to requalify an existing product from a new green process, be prepared to discount the price in exchange for the customer having to go through a requalification process. Customers do not like change at all.
Under what conditions would management allow a process choice that is greenish but obviously more costly? Possibly never. A greener process needs to give a cost savings somewhere. Barring draconian regulation, a successful green process will have a cost benefit. The benefit may be in lower direct cost of manufacture, satisfaction of a process requirement by a customer, or a hedge against future regulatory restrictions.
Solvents may be one of the easier opportunities for green chemistry. For a given process, there may be a bit of latitude with the solvent. Sometimes the issue of solvent residues in the product may arise. Some solvents are easier to strip away than others. No one will choose a green solvent that is hard to remove from the product. Again, the drivers will be those mentioned above.
Another green opportunity is when we automatically choose a stoichiometric reducing agent when we could have looked at a catalytic system with hydrogen. Catalyst costs per kilogram of product can range from negligible to high. One advantage of using expensive platinum group metal catalysts is that the metal is usually recyclable, which is greenish. However, any organic ligand present does get incinerated producing non-green emissions in the process of energy intensive metal refining. If catalytic hydrogenation requires the installation of new capital equipment, then the installation costs in time and money may prevent a switch.
For green oxidation, oxygen in the air is cheap and abundant but carries a big problem. Using an oxidizing gas in the presence of a flammable liquid reaction mass can give rise to an explosive atmosphere in the headspace of the reactor. This is a non-starter in industry. Catalytic oxidation using a greenish primary oxidant in solution is a good place to start. I’ve heard of hydrogen peroxide or peroxyacetic acid referred to as greenish.
The big problem with green synthetic organic chemistry is that in order to synthesize a molecule, the structural precursors must be sufficiently green, reactive and selective to run on a reasonable timescale and at acceptable cost. And they must not produce non-green side products or wastes that spoil the advantage of the target green step. A weighing of the pros and cons of any attempt to do green chemistry will always be needed and subjective decisions will be made on what constitutes green.
While we are all struggling to be greener, let’s not forget to remind ourselves and others that reduced consumption of almost everything is a green step we can all take right now.
Recent Comments