I’ll admit to having a bit of a book fetish. I love everything about books except moving them. I collect new and old books. I have a professional chemistry library that is consuming quite a bit of wall space. And that doesn’t include the boxes of JOC, Organometallics, and JACS. It’s getting out of control.

My amateur geology library has gone from one book last summer to about 50 books and USGS circulars today, and more are enroute this very minute thanks to Amazon.com, Paleopublications, and many more booksellers.

What I’m beginning to see is that university libraries across the country are withdrawing older chemistry books from their shelves. I do not refer to textbooks. I am referring to the valuable secondary literature that has accumulated descriptive chemistry knowledge.  These books are snatched up by specialty book sellers and are placed on the internets for sale where odd characters such as myself will gratefully buy them.

Recently my fetish for old books is helping me solve a thorny contemporary inorganic analysis/synthesis problem. You see, the older texts are rich in wet chemical methods. While a book like Chemistry of the Elements by Greenwood and Earnshaw is fantastically broad in its scope, it is not meant to transfer the pargmatics of procedure. The older chemistry and ore refining texts are full of practical information that seems to be fading away. While the primary literature may be available on SciFinder, books that cover accumulated descriptive chemistries are becoming scarce.

I can’t reveal the details of my revelation. But I can say that a process development person can learn quite a bit about materials processing from the late 19th and early 20th century literature. Our predecessors couldn’t depend on ICP or GDMS or XRD to help them follow the process. The wet chemical methods they developed also give us insights into the transformations necessary to produce purified products.

The unit operations of calcining, comminution, reduction, oxidation, flotation, dissolution, drying, etc., have not changed much in a fundamental way since the days of Agricola. But they are better quantified by virtue of a century of research.

Our collective drift from wet chemical methods to instrumental and computational approaches to analysis are also taking many of us away from the pragmatics of chemistry. The hyphenated instruments of today are leading large numbers of chemists away from the art of chemical transformation and isolation in favor of chemist-as-software-expert. Certainly this computational intensive investigation is not lost in our university curricula. Our hypnotic embrace of technological triumphalism meshes with the perceived need to minimize hazardous material inventories in the chemistry department stockroom. And with the perceived need to minimize chemistry students to exposure to chemicals.

Chemical industry is centered on the art of making things. In the end, somebody has to figure out how to make chemical substances and somebody else has to do the actual work. We chemists have to make sure that university curricula meets the needs of society and that the librarians of the world understand the importance of older chemistry books.