Th’ Gaussling was interested to read the August 30, 2010 issue of C&EN regarding the market situation with the rare earth elements. Or, at least certain rare earth elements (REE). The staff at C&EN has finally picked this matter up on their radar. Significant ore bodies are located in countries prone to reflexive autocracy, i.e., Russia and China.

More sgnificantly, as a friend and colleague recently pointed out, China has decided to exercise its Lanthanide fist in by slapping an embargo on rare earth materials available to much of the global market. The affected technologies include those using neodymium (or rare earth) magnets for power generation or motors. Rare earths are used in optics, ceramics, fuel cell membranes, and catalysts as well. It’s a pretty big deal for the rest of us. Lots of American R&D resources have gone into this technology.

This is the political chemistry of the REE’s. China is doing what China does- exercising national industrial policy through an emphasis on development of its natural resources. The USA, with its deep preference for free markets, is doing what it has done the last few decades- waking up surprised after a night of riotously drunken merrymaking in the marketplace. That is, responding to shortages well after the momentum has begun.

While US technologists were busy inventing things with REE’s, China was busy anticipating the upcoming demand for its REE’s. Why? Because raw mat sourcing is what R&D people do afterwards. They develop a widget and then ask how they will source the thing. Just natural. 

While the US was busy shutting down mining operations in the last decades of the 20th century, China has been systematically developing its resources.  China has an abundance of journals and workers devoted to REE technology.  The big corporate mind set in the US recoiled from investment in mineral wealth at home. A great many of the mining operations in the US are operated by Australians, Canadians, and South Africans. Somehow they are not afraid to extract minerals here, but the sons and daughters of the pioneers seem to be shy about it.

China seems more focused on developing its industrial base rather than its consumer base.  While there are some industrial policy lessons for the west here, the fact is that China is as China does.  We should not be surprised at this behavior.

The signals of a tougher Chinese trade stance come after American trade officials announced on Friday that they would investigate whether China was violating World Trade Organization rules by subsidizing its clean energy exports and limiting clean energy imports. The inquiry includes whether China’s steady reductions in rare earth export quotas since 2005, along with steep export taxes on rare earths, are illegal attempts to force multinational companies to produce more of their high-technology goods in China.

Despite a widely confirmed suspension of rare earth shipments from China to Japan, now nearly a month old, Beijing has continued to deny that any embargo exists.

Industry executives and analysts have interpreted that official denial as a way to wield an undeclared trade weapon without creating a policy trail that could make it easier for other countries to bring a case against China at the World Trade Organization. [Keith Bradsher, 10/19/10, NYT. Italics by Th’ Gaussling]

It’s not all doom and gloom. Molycorp has announced an IPO to raise funds for expansion and modernization of its Mountain Pass REE mine.  The geology of this ore body is described at this Cal Poly link.  One of the issues complicating the extraction of ore from this massive igneous and metamorphic carbonatite complex is the proximity to the Mojave National Preserve.

REE’s in geological context

In the cosmochemical bingo of hadean Earth, the landmass that we now refer to as Asia filled in the abundance bingo card with the rare earth group of elements. The combination of plate tectonics, crystalline partitioning of cooling magma, and erosion have lead to surface occurrences of rock rich in REE’s.   This group of metals is commonly defined so as to include Sc, Y, and the lanthanide metals. Others will include the actinides. All have a valency of  +3 in their natural compositions. A few of the lanthanides can attain +2 (Eu) or +4 (Ce, Pr) oxidation states, but these are unusual.  Sometimes scandium is left of the list. In other instances, both scandium and yttrium are left off the list.

A graph of lanthanide element abundance vs atomic number will show a saw tooth curve where the even atomic numbers will be represented with greater abundance. This phenomenon isn’t limited to the stretch of lanthanides and is referred to as the Oddo-Harkins rule.  One reference translated from Russian lists it as the Oddo-Kharkins rule (Ryabchikov, Ed., Rare Earth Elements, Extraction, Analysis, Applications; 1959, Academy of Sciences, USSR; Chapter by V.I. Gerasimovskii, Geochemistry of the Rare Earth Elements, p. 27).

It is not uncommon for REE’s to occur as a group in the same mineral, though Sc is often absent.  I’m aware of at least one mineral occurrence of Sc that is impoverished in lanthanides.  Among odd-numbered REE’s, Eu is especially low in abundance.

Within the REE group, two subgroups are often defined: the cerium subgroup (La, Ce, Pr, Nd, Pm, Sm, and Eu); and the yttrium subgroup (Gd, Tb, Dy, Ho, Er, Tm, Yb, Ln, and Y).

The REE’s show some interesting attributes. According to the Goldschmidt classification, the REE’s are lithophiles, literally “silicate loving”. More to the point, lithophiles are oxygen loving. The REE’s are known to form refractory oxides.  REE’s are commonly associated with pegmatites and, according to Gerasimovskii,  have a genetic connection with granites and nepheline syenites.

See the later post on the illuminating history of rare earth elements.

Advertisements