By the early 16th century in Europe, metallurgy had become an established cottage industry in numerous locales. Artisans were sourcing copper, tin, zinc, antimony and iron ores for reduction, refinement and alloy production for cannon and bells among other products.  While there was no systematic science of chemistry in a form recognizable today, the necessity of constant proportions was understood and exploited to maximize the efficient use of scarce materials. Metallurgists of the 16th century would no doubt share the enthusiasm of developing technology with the same fervor as the technologists of today. 

Unfortunately for these 16th century technologists, the contribution of centuries of alchemy produced a confusing array of occult-based practices. These alchemical practices were based on Aristotelian notions of material “qualities” rather than a system of quantitative relationships of and between substances. It is thought that alchemy began with Grecian metalworker’s practical knowledge of metal preparation. Inevitably, this practical art was overprinted with a thick layer of theological mysticsm by the end of the first millenium. By the end of the alchemical age, any systematic theories of matter were blended into a Mulligan stew of early Roman Catholic mysticism,  incomprehensible nomenclature, and the false choices set forth by Aristotle in his theory of matter.

Fortunately for 16th century practitioners of the metallurgical arts, several encyclopedic works were published detailing the practical art of smelting and casting of metals and what we now know to be alloys.  A prominent early work published in 1540 was the Pirotechnia by Vannoccio Biringuccio (1480-1539). Born in Siena, Italy, over the course of his life Biringuccio traveled extensvely throughout Italy and Germany. His Pirotechnia is a series of books and chapters detailing foundry techniques that he witnessed first hand throughout his travels. He made every attempt to describe methods and techniques in enough detail to accurately capture the technique in question. Above all, he completely drops all the alchemical mysticism and bases his comments on process oriented details such as measured proportions and processing conditions.

Up to this point, what was missing from this very early form of chemistry was a systematic collection of facts and measurements and an accurate chemical model in which to give the facts meaning and predictive value.  Biringuccio, and later Agricola, would begin the disengagement of alchemical mysticism and provide a basis of metallurgical technology upon what might be called science. In a real sense, this helps to set into motion the western industrial revolution. Metallic goods would be produced by very pragmatic artisans who would continue to improve their art through the application of rudimentary measurement.  While it would be four centuries before atomic theory would be developed to make sense of the manner in which definite proportions operated, systematic methods of assay would begin to appear well before atomic theory. The ability to identify value in ores and quantitate it allowed the mass industrialzation of metals.