You are currently browsing the category archive for the ‘Chemical Industry’ category.

Enroute to other things I ran across an old Gulf R&D patent, US 3294685, titled “Organic compositions containing a metallo cyclopentadienyl”. Sifting through the description my eye caught the interesting content below:

July 1941. A test spray was prepared by dissolving 2.5 grams (3.2 percent) of iron dicyclopentadienyl in ml. of a typical household insecticide base oil. The tests made with this solution employed a dosage of IO-second discharge. An equilibrium :period of 15 seconds followed by an exposure period of 70 seconds, during which the mist was permitted to settle on adult house flies confined in a screen-covered dish, was employed in the tests. The results of the tests showed that of the flies which had been contacted with the base oil containing 3.2 percent by weight of iron dicyclopentadienyl, 53.6 percent were dead after 24 hours. Of theflies which were contacted with the base oil alone, only 13.0 percent were dead after 24 hours. Check flies which were confined for 24 hours without having been contacted with either the base oil or the base oil containing iron dicyclopentadienyl had a death rate of only 0.4 percent. The better than fifty percent mortality of the flies treated with the base oil containing iron dicyclopentadienyl is indicative of the insecticidal properties of naphthas containing a small amount of iron dicyclopentadienyl. Naturally, the amount of metallo cyclopentadienyl used in insecticidal compositions-will vary with the particular compound employed and also depends upon the particular insects for which the spray is intended. The amount of iron dicyclopentadienyl employed in insecticidal compositions intended for use on flies is between about 1.0 and 10.0 percent by weight.

Ya know, a greater than 50 % kill rate seems to be getting a bit sporty for the flies. The ol’ boys at Gulf were studying the suitability of a variety of ferrocene analogs for fuel additive application. What lead them to go from octane enhancement and smoke control to killing flies is not revealed in the patent.

Notice the nomenclature in the patent language. The word ferrocene is not mentioned. Looking at the timeline we see that the Gulf ‘685 patent was filed April 21, 1952, not long after the publication of this curious iron cyclopentadienyl compound by two groups, Kealy & Pauson on 12/15/51, and Miller, Tebboth, and Tremaine on 1/1/52. Though Pauson and Keely published first, an examination of the papers show that Miller, Tebboth, and Tremaine were first to submit- July 11, 1951 vs August 4, 1951 for Pauson and Kealy.

The day before Gulf filed the patent application, April 20, 1952, a groundbreaking paper by Wilkinson, Rosenblum, Whiting, and Woodward was published on the proposed structure of iron bis-cyclopentadienyl. It is reported that the name ferrocene was invented by Mark Whiting, a student of R.B. Woodward and coauthor of the 1952 paper in JACS. The name derives from the ferrous ion and the aromatic (“benzene”) nature of the cyclopentadienyl ligands.

The curious structure was proposed largely on the strength of a single C-H IR band at 3.25 μ. Since all of the C-H bonds appeared to be equivalent, the only structure compatible with the formula, charges and symmetry was the famous η5 (eta five) sandwich structure. Later the word metallocene finds use for this class of substances.

There is disagreement as to some of the details outlined above. An excellent article by Pierre Lazlo and Roald Hoffmann navigates some of the narrower channels in the history of ferrocene. It is well worth the read. Lazlo & Hoffmann suggest that Woodward is thought to have conceived the sandwich structure.

Ferrocene and derivatives would soon prove useful in many areas. A more obscure application is found in the field of rocket propellant additives and function as burn rate stabilizers. In fact, certain ferrocene derivatives appear on the US Munitions List, 22 CFR 121.1, Category V, (f)(4) Ferrocene Derivatives. A good overview of ferrocene and other metallocenes can be found in Wikipedia.

Circling back, the patent application for Gulf ‘685 was filed 4/21/52, only a few months after the publication on 12/15/51 of the Pauson & Kealy paper and two weeks later the Miller, et al., paper on 1/1/51. In the 4 months between Pauson & Kealy and the Gulf patent filing, two independent groups had published papers reporting iron dicyclopentadienyl in different ways, a Harvard group had postulated a structure for the complex using a bonding type, and the Gulf R&D group had produced various analogues for testing as fuel additives. In this short time interval, the first organo-iron compound was taken from a literature source through industrial R&D and a patent application. As a premium, Gulf determined that it had insecticidal properties.


Wilkinson, Rosenblum, Whiting, and Woodward J. Am. Chem. Soc., 1952, 74 (8), pp 2125–2126. DOI: 10.1021/ja01128a527

Kealy and Pauson, Nature, 168, 1039 (1951). Received Aug. 7, 1951.  DOI: 10.1038/1681039b0

Miller, Tebboth, and Tremaine J. Chem. Soc., 1952,0, 632-635. Received July 11, 1951. DOI: 10.1039/JR9520000632

Laszlo P., Hoffmann R. ACIEE, 2000 Jan; 39(1):123-124.  DOI: 10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z

One of my job responsibilities is to educate new hires on reactive hazards and the basics of electrostatic discharge safety in the chemical manufacturing environment. The attendees are usually new plant operators with the occasional analytical chemist also in attendance. The educational background for the operators is nearly always a high school diploma with work experience of widely varying duration in non-chemical industries. Since we are far from the regional chemical manufacturing centers in the USA, we rarely encounter applicants from our industrial sector. Commonly the analysts arrive with a BA/BS in chemistry, biochemistry, or even biology sometime in the past.

In their 1 to 2 weeks of introductory training I’m given 1 hour for each of the 2 topics- barely enough time to wedge in important vocabulary let alone develop a command of, well, anything. My approach is to first talk about the difference between hazard and danger with some folksy examples. Then I introduce the general concept of stability using examples boxes on a rising incline. From there, we talk about stability as related to variously truncated inverted conical objects. The notion of instability, meta-stability, and stability are teased out of examples of the tipsiness of inverted cones leading to a change of state under the influence of external forces. This is very concrete and primes the mind to begin to grapple with the abstract notion of substances undergoing change depending on the precariousness of their initial state or the intensity of external influence.

Synthetic chemistry is very much about the careful manipulation of instability in order to produce the sort of change that is desired. Highly stable materials, i.e. sand, are not desirable in a chemical synthesis minimally because they are resistant to alteration. Many reaction steps may be performed and much cost incurred in order to produce features (functional groups) that are sufficiently unstable to undergo the series of desired connections.

After all of the above, the remainder of the hour is spent talking about chemical hazards and how some of them may be passivated by paying attention to the fire triangle. Also the matter of chemical compatibility is introduced as well as the existence of various categories of substances with examples. Of course, this means nothing to them. It’s just a bunch of new words arranged in unfamiliar ways. I’m quite well aware of this, but the purpose is to prime the pump so that when they hear these solvent names and words like acidic, caustic, basic, pH, quench, etc., then can begin the long process of connecting the dots to produce a better picture of their workspace.

The topic of ESD – electrostatic discharge – has its own peculiar challenges. First of all, static charge is invisible, pervasive, and unless you have direct measurements, provides hazards of an unknown risk. To understand ESD hazards, the learner should be exposed to the units describing static charge. These include the Coulomb (C), the volt (Joules/C), the Joule (J), area charge density (µC/m^2), power (Watts = J/sec), the Ohm (Ω = V/A) and the Siemens (S = 1/Ω), and the Ampere (A = C/sec).

Herein lies the real point of this essay. In teaching ESD safety for 4-5 years, I have met perhaps 2 attendees (engineers) out of many dozens who recall having taken coursework relating to basic electricity. I always begin the seminar by taking a poll on who has heard of Ohm’s Law. In reality, I don’t expect electrical proficiency from folks who have not worked in an electrical field. What surprises me is that so few can recall having heard of Ohm’s Law. How is it that we are letting so many people graduate from high school without some course work introducing the very basics of electricity?? This related to one of the most pervasive and influential technologies in our time. I think this is a stunning oversight.

“A’hem, cough cough,” you sputter, “but surely …” –short pause for effect- “… students who have taken high school physics have had instruction in electricity,” you reply with obvious incredulity.

If you had said this you’d be correct. But the educational profile of many factory workers doesn’t seem to include many people who have, in our experience, taken physics in high school. Those from the electrical trades tend not to show up from the temp agency for screening.

So let me end this by asking the mandarins of our school districts why we let students not college bound  graduate without some background in the basics of electricity or electronics? To repeat, this is a stunning oversight, given the extensive use of electrical functions and objects in our lives.



A lot of science is about trying to find the best questions. Because the best questions can lead us to better answers. So, in the spirit of better questions here goes.

By loosening environmental regulations aimed at pollution prevention or remediation, the mandarins reporting to POTUS 45 have apparently made the calculation decided that some resulting uptick in pollution is justified by the jobs created thereby.

Question 1: For any given relaxation in regulations that result in an adverse biological, chemical or physical insult to the environment, what is the limit of tolerable adverse effect?

Question 2: How will the upper limit of acceptable environmental insult be determined?

Question 3: Will the upper limit of acceptable environmental insult be determined before or after the beginning of the adverse effect?

For a given situation there should be some ratio of jobs to acceptable environmental damage.

Example: By relaxing the rules on the release of coal mining waste into a river, X jobs are created and, as a result, Y households are denied potable drinking water. What is an acceptable ratio of X to Y?

Those are enough questions for now. Discuss amongst yourselves.

A grim message from Chairperson Vanessa Allen Sutherland of the US Chemical Safety Board reads-

“The U.S. Chemical Safety Board (CSB) is disappointed to see the President’s budget proposal to eliminate the agency.  The CSB is an independent agency whose sole mission is to investigate accidents in the chemical industry and to make recommendations to prevent future accidents and improve safety.  For over 20 years, the CSB has conducted hundreds of investigations of high consequence chemical incidents, such as the Deepwater Horizon and West Fertilizer disasters.  Our investigations and recommendations have had an enormous effect on improving public safety.   Our recommendations have resulted in banned natural gas blows in Connecticut, an improved fire code in New York City, and increased public safety at oil and gas sites across the State of Mississippi.  The CSB has been able to accomplish all of this with a small and limited budget.  The American public is safer today as a result of the work of the dedicated and professional staff of the CSB.  As this process moves forward, we hope that the important mission of this agency will be preserved. ”     -posted 3/20/17

I want to voice my support generally for this elite group of accident investigators. As a chemical safety professional myself I am disappointed to see the CSB regarded low enough by the President’s budget writers to warrant being in the proposal for elimination. The job of the CSB is to investigate the cause(s) of chemical, petrochemical, or other facilities that handle materials having the potential to produce serious accidents. Having done accident investigations myself, albeit at much reduced scale from a petrochemical refinery, I appreciate what a difficult job this is and the great value of the disseminating findings to the industry.

The value of any given CSB report is the story of how an accident is initiated, how it propagates, and how it may couple with diverse systems. As a crucial part of the report is a detailed dissection of the relevant operational systems and human/machine interfaces and how they may have coupled to the event. It is educational and very useful for the safety community to learn how unfamiliar failure modes initiate and how knock-on effects may steer the accident in directions that are difficult to predict.

Planning for process safety involves input from the fields of chemistry, engineering and operations. Importantly, it requires imagination because planning safe operations is about predicting the future. Shutting down CSB investigations will deprive the engineering and safety community of a valuable resource detailing subtle or non-obvious ways in which complex systems can fail.

Recall the Apollo 1 fire or the Challenger explosion and how inquiry into those events lead to better appreciation of failure modes and the layers of protection that can be put in place to prevent the failure. If this kind of investigation is kept confidential, the advance of safe system design will stagnate.

This post has been updated. Th’ Gaussling, 6/4/16.

If you work with chemicals at the level of chemist in a production environment, chances are at some time in your career you’ll be called upon to help decide when a material is too hazardous to use in manufacture. It can be in regard to raw materials or as the final product. Your organization may have protocols or institutional policies or memories relating to certain classes of substances. Some companies, for instance, will not use diethyl ether in its processes. Others may require hydrocarbon solvents *absolutely* free of BTX. Some companies are so fastidious about worker exposure that the faintest whiff of solvent constitutes a breach. One world class company I know requires R&D chemists to include a process hazard analysis, review, and an inspection for all R&D reactions performed in the hood.  Whatever the company, most have fashioned some kind of boundary as to what is permissible to have on site and what isn’t.

Large chemical companies tend to have large EH&S departments with well established SOP’s and protocols with regard to personal protective equipment (PPE) and the measurement of occupational exposure to substances. Larger companies may have an OSHA attorney on retainer and staff members specializing in regulatory compliance.

One might suppose that smaller chemical companies may not have the depth of hazardous material experience that the larger companies have for many reasons. Smaller companies may have smaller capital equipment and a smaller staff. But smaller companies may have a greater organizational freedom which can lead to a great variety of projects. A great variety of projects often means that a great variety of materials are used on site. As such, a smaller company might very well have considerable expertise in a wide variety of chemical substances and, consequently, a wide variety of hazards.

While a smaller chemical company may have considerable expertise in handling its hazardous materials, it may be lacking in infrastructure for administrative controls and regulatory compliance. A wise CEO watches this aspect as closely as the actual operations.

Whether large or small, eventually a company has to draw the line on what hazards it will bring on site. The chemist has some very sober responsibility in this regard. Through the normal ordeal of process development, the diligent synthesis chemist will find the optimum path from raw material to product. All synthesis consists of the exploitation and management of reactivity. But there is always the “deal with the devil”. In exchange for a useful transformation, properly reactive precursors must be prepared and combined. A mishap with a 1-5 liter reaction on the bench top is messy and possibly an immediate threat to the chemist. But that same reaction in a 50 gallon or 5000 gallon pot can turn into the wrath of God if it runs away. The chemists judgment is the first layer of protection in this regard. All process chemists have to develop judgment with respect to what reagents, solvents, and conditions are feasible. Economics and safety come into play.

A runaway reaction poses several kinds of threats to people, equipment, and the viability of the company. There is the immediate thermokinetic threat stemming from the PV=nRT, meaning that energy can be dumped into PV work leading to the high speed disassembly of your equipment. A prompt release of heat and molecules kicked into the gas phase may or may not be controllable. Especially if the runaway leads to non-condensable gases. A runaway has a mechanical component in addition to the chemical action.

An runaway may cause the reactor contents to be abruptly discharged. Several questions should be answered ahead of time. Where do you want the contents to go and what are you going to do with it once it is there? Catchpots and emergency relief systems are common and resources should be invested there.

A question that the wary chemist must ask is this: What if a cloud of my highly useful though reactive compound gets discharged into the air or onto the ground? Do the benefits of this reagent outweigh the downside costs? Even if a release is not the result of a thermokinetic disaster like a runaway, explosion, or fire, a simple release of some materials may be consequential enough to require the evacuation of a neighborhood. Once your materials have left the site in the form of a cloud or a liquid spill and you make the call to the fire department, you have lost control of the incident. Even if nobody gets hurt or exposed, the ensuing “regulatory compliance explosion” may knock you down.

A chemical process incident can have mechanical consequences, chemical release issues, and the matter of fire. Substances that are pyrophoric have automatic ignition problems that may be surprisingly easy to deal with, especially if they are liquid. Liquid transfer systems can be inerted easily and pyrophoric liquids can be transferred airlessly and safely. Pyrophoric solids are another matter. There  are few generalizations I can make about pyrophoric solids. Inert solids pose enough handling issues without having the added complication of air/water sensitivity. All I can say about pyrophoric solids- waste or finished product- is that you will need solids handling equipment, a big supply of LN2 and procedures for passivating hot filter cakes. Production glove boxes and Aurora filters are particularly useful. Also required is a space on the plant site where you can open up a container and let the contents burn if needed. If air gets into a container of pyrophoric solids, it’ll begin to get hot. That is when you need to have an open spot where it can smolder or ignite harmlessly and not bring the facility down. Crowded industrial parks are a bad place for such material handling.

When designing a chemical handling space, it is important to think about what happens in a fire. Flammable liquids are under the constant influence of gravity and will run to the low point on a floor. The question you must to ask beforehand is this: Where do I want the burning liquid to go? There are good choices and poor choices. Preferably a stream of burning or flammable liquid should run away from evacuation pathways and exits as well as anywhere other hazardous materials or combustibles may be contained. To some extent this is moot because indoor spaces should be covered by a fire suppression system. But outdoor spaces may be problematic in regard to crowding of a tank farm and drums and cylinders.

Burning pools of organic liquids radiate considerable energy per sq ft per sec (power in Watts). The temperature of nearby objects will rise rapidly to the flash point and the ceiling spaces will accumulate smoke and hot gas. Drums and cylinders filled with flammable liquids or gases will eventually overpressure and release their contents adding to the mayhem. The release can be in the form of a BLEVE or a flood of flammable liquid leading to a widespread pool fire.

There are resoures available to quantitate the risks of such releases. The American Institute of Chemical Engineers (AIChE) is well organized and provides much literature on the topic of chemical plant safety. In particular I am thinking of Dow’s Chemical Exposure Index Guide, 1994, 1st Edition, AIChE, ISBN 0-8169-0647-5.  This handbook takes the reader through calculations aimed at estimating the risk and likelihood of chemical releases.

Also available is Dow’s Fire & Explosion Index and Hazard Classification Guide, 1994, Seventh Edition, AIChE, ISBN 978-0-8169-0623-9.  This handbook supports the use of a quantitative risk analysis chart for the use of a risk and hazard index for generating numbers associated with process activities for cost/benefit analysis. It is well worth the addition to your library

Such flammable liquid scenarios can begin many ways.  Forklift and maintenance operations are particularly rich in opportunity for a fire. The physical location of flammable liquid storage must be well thought out. Ideally a warehouse fire should not be allowed to spread to capital equipment locations. This helps to keep workers out of harms way and contains the magnitude of the financial disaster as well.  Since most chemical plants seem to grow organically over time, unfortunate choices are usually made in regard to incident propagation.

One type of propagation incident can be ameliorated through the clever use of architecture. I am aware of one tragic incident where an explosion occurred in a processing space of a facility that had grown over the years by the addition of contiguous manufacturing and warehouse spaces. A rabbit’s warren of interconnected rooms and hallways accumulated over time. At the moment of the reactor explosion, the room and adjacent spaces were badly damaged by the blast overpressure as you’d expect. However, since the building was interconnected the overpressure propagated throughout many other distant spaces and delivered considerable structural damage to the facility. Overhead doors were bent outwards and windows and man doors blown out. Extensive damage may have been avoided by the simple expedient of providing open air walkways to separated buildings rather than enclosed hallways between adjoining areas. Of course, the benefit of this depends on the who, what, where, when, and how, but eliminating pathways for a blast wave is a cheap and easy way to start.

When is a substance just too hazardous? This is fundamentally a business or policy decision. Ultimately, it is the responsibility of the organizational leadership to draw the line on the risks that are deemed acceptable. It is the ethical responsibility of those knowledgeable and experienced with the proposed chemistries to combine information with pragmatics to provide persuasive feedback to the decision makers in charge.

There are plants that routinely manufacture nitroglycerine, phosgene, chlorine, phosphine and HCN. Workers spend their careers in these places.  Most risks can be abated by properly engineered processing and packaging. It really comes down to personal choice. Is that ammonium perchlorate plant that just offered me a job operated safely? These reactive and/or energetic materials all have properties that lead to demand for their use. Somebody is going to supply that demand. We chemists have to look inward and then act with our eyes wide open and our heads on a swivel. Myself? I wouldn’t work in a nitroglycerine factory, but I’m glad that someone does.’

[Added 6/4/16 by Th’ Gaussling] I happened to go back to this post and in doing so read a comment by “Bob”, which you can see in the comment section below. Here is a copy

“I actually believe that as a society should keep the safety rules relaxed a bit in academia. Academia, for better or worse, is our national chemical research institution”

So underpaid grad students, postdocs and staff working at  a univeristy are less human, and less deserving of safety than their for profit brethren?

That’s diabolical Mr. Gaussling. Pure evil incarnate. For whose gain do you sacrifice their lives?

I want to address this now better than I did back then. To Bob I say this: Everyone has a right to a safe workplace. Academic institutions as well as industrial operations must use best practices in regard to worker safety. This is axiomatic. Plainly I did not articulate my contention as well as I could have. I will do so now.

We have to assume that junior chemists are likely grow to be senior chemists in an organization. The role of a senior chemist in industry for example, may be quite varied through her/his career. A senior chemist who has stayed in the technical environment will almost unavoidably have been confronted with a large variety of questions in regard to circumstances and outcomes relating to hazardous materials and tricky reactions. Moreover, a senior chemist is likely to have been promoted to a level that also involves supervision, the drafting of SOPs, work instructions, MSDS documents, emergency planning, laboratory design, etc.

In my view, a senior chemist as described above has an ethical and moral responsibility to coworkers, plant operators, material handlers, and customers to oversee chemical safety. A chemist at any level has a responsibility to make known to all involved what dangerous circumstance might arise with any given chemical operation. Either in relation to the hazardous properties of substances that may be released in mishandling, or in regard to hazardous processing conditions that can lead to danger.

I’ve used the word hazard(ous) and the word danger(ous). We need some clarity on this. If you Google the words and stop with the dictionary definitions you will be left with the shallow notion that they are synonyms. If you dig deeper, say at the website of the Canadian Centre for Occupational Health and Safety (OSH), you will find a definition of “hazard” that I find particularly useful. To wit:

A hazard is any source of potential damage, harm or adverse health effects on something or someone under certain conditions at work. [italics mine]

The same fuzziness in definition exists for the word danger(ous) as well. A definition I prefer is below:

A dangerous occurrence is an unplanned and undesired occurrence (incident) which has the potential to cause injury and which may or may not cause damage to property, equipment or the environment. [italics mine]

This definition is borrowed from the University College Cork, Ireland (UCC). I believe this is a good definition and it readily sits apart from the definition of hazard above.

The key difference is that a hazard is any source of potential of damage … under certain conditions.. whereas danger is a condition brought on by an unplanned or undesired occurrence. Next, lets consider these terms in the context of chemistry.

On the shelf in the fire cabinet is a glass bottle of phosphorus oxychloride, properly sealed and segregated. As the POCl3 sits on the shelf in the cabinet, I would argue that it is only hazardous. If, however, you pick up the bottle and in walking to the fume hood drop it causing it to break and spill the contents in the open, you’ve caused a dangerous situation. It’s an imminent threat to health and safety.

Conversely, let’s say that you carried the bottle to the hood, used it, then returned it to storage without incident. In the reaction the POCl3 is consumed and in the workup the residual acid chloride is quenched by water. Congratulations! You have taken a hazardous material, used it safely, passivated the actives during workup, and eliminated at least the acute hazard relating to POCl3.

In the first situation, a hazardous material was mishandled and became dangerous. In the second situation, the hazardous material was handled properly, consumed, and residuals passivated. In this case a hazardous material was used safely and to positive effect.

Seem trivial? Well, it’s not. This difference in meaning leads to a confusion that is especially acute among the non-chemist population. But my point leads to the question of how students are taught to use hazardous materials.

I spoke of relaxing safety requirements in academia. An example of such a thing might be the use of diethyl ether. This useful solvent is banned outright in some chemical manufacturing operations across the country owing to the flammability. Even in their R&D labs. This is corporate policy handed down by those responsible for risk management, not scientists. In some industrial labs, woe is he who has an unexpected occurrence like a boil-over or a spill.

I believe that Et2O should remain in academic research labs for both the research value and for the development of valuable lab experience by students and postdocs.

You learn to handle hazardous materials by having the opportunity to handle hazardous materials.

Ether is only a simple example of what I’m trying to communicate. In order for chemists to graduate as experienced scientists with working familiarity in the properties of substances, they must have experience handling and using a large variety of substances, many of which may be substantially hazardous. And by hazardous I mean much more than just toxic. A substance may have a reactive hazard aspect that is a large part of it’s utility.  To safely handle substances that pose a reactive hazard, a chemist needs to have experience in using it. And killing it. The chemist must try to gauge the level of reactivity and modify the use of the substance to use it safely. If you’ve made or used a Grignard reagent you know what I mean. Expertise in laboratory chemistry only comes through direct experience.

Hazardous reactive materials do useful things under reasonable conditions. Non-hazardous, unreactive materials find great utility in road and bridge construction.

If we regulate out all of the risk by eliminating hazardous materials in academic chemistry, what kind of scientists and future captains of industry are we producing? What we can do is to put layers of administrative and engineering protection in the space where the hazardous transitions to the dangerous.  Academic laboratory safety is promoted by close supervision by experienced people. Limits on the amount of flammables in a lab space, proper syringe use, safe quenching of reactive residues, proper use of pressurized equipment, and a basic assessment of reactive hazards present in an experiment will go a long way to improving academic lab safety. Experienced people usually have a trail of mistakes and mishaps behind them. If we corporatize the academic research experience to a zero risk condition, we may kill the goose that lays the golden egg.


The US Chemical Safety Board has approved and released the final report on the Macondo /Deepwater Horizon  blowout and explosion of 4/20/10 in the Gulf of Mexico. The report is in two volumes and does include an animation of the sequence of events. I have found the CSB animations to be particularly helpful in understanding the key features revealed by their investigations.

The CSB recently released their final report on the ammonium nitrate fire and explosion in West, Texas on 4/17/13. A few months after the release of the final report the ATF announced a reward of up to $50,000 for information leading to the arrest of person or persons responsible for the industrial fire and explosion that killed 15 people.

If the forensic aspects of industrial accidents is of interest to you, I’d recommend having a look at the CSB website. Knowledge of various initiation and propagation modes in past industrial accidents is useful for those of us trying to prevent initiating events on our own sites.

In the course of my professional society memberships I receive an email newsletter called API SmartBrief from the American Petroleum Institute. An article caught my attention today. The API newsletter blurb read-

Senators say methane rule will have unexpected impact

“The Obama administration doesn’t understand the full economic effect of new federal rules meant to cut methane emissions from oil and natural gas production, according to a letter signed by Sen. David Vitter, R-La., and colleagues. “Given that so many of our communities are being impacted by current market conditions, [italics added for emphasis] any new regulations impacting oil and natural gas should be based on reliable, transparent data that is devoid of any political considerations,” read the letter sent to Environmental Protection Agency Administrator Gina McCarthy.” 5/23/16

This API summary is sourced from

The alarm expressed by Vitter, API, and unnamed others struck me as amusing. The methane rule will have unexpected impact. Golly Mr. Wizard, tell us more. Naturally, API is beating the drum for petroleum interests. It is their charter, after all. Vitter bemoans the cost impact on workers and communities in his state and, to be sure, that is his job. Thus, the interpenetrating political-industrial partnership seems aligned in their opposition to possible rule making by EPA. Alles ist in Ordnung.

The funny part is that the current market condition cited by Vitter and, I would suppose, API, is the result of years of delirious drilling and hydrofracturing of oil and gas deposits. Perhaps someone of credible standing mentioned that a bubble was forming and that maybe, just maybe, we’ll end up with a glut. If such a voice did arise, it was not widely cited, at least to my knowledge.

So, this self-inflicted malady of excess supply and low prices has crept up on this colossal industry with it’s legions of swingin’ d**ks leasing and drilling methane glory holes. Boom and bust is not new to big oil. Not unexpectedly, OPEC failed to cooperate and reduce their oil production, the greedy bastards. King coal is staggering like a large sauropod after an asteroid impact. And even more dismaying to big petro is that solar, wind, and who knows what else is creeping upwards in power production and taking market share.

With all of this recklessness with oversupply, could it really be that big oil is bad at basic price collusion? Shiver me timbers!

My point is that using a self-inflicted market down-turn to justify reckless disregard in furthering large scale contamination of the atmosphere is a malfeasance of the first magnitude. If the free market gave birth to such an awful turn of events as an oil and gas oversupply, how can we expect the invisible hand of the market to steer us away from certain ecological ruin through destruction of the biosphere from accelerating consumption and advancing overpopulation?

The market is like the male sex organ. It has no brain and seeks only one thing- More.



Two trips in the last month. First to New Orleans to attend the specialty chemical trade show called Informex. We didn’t have a booth in the expo this year. It hadn’t served a useful purpose for many years, truth be told. I stood in for a sales guy who couldn’t attend. Nice to be back in the field.

Informex is an odd menagerie of buying, selling, drinking, feasting and spy craft. For the first time I was invited to a gathering with a balcony above Bourbon Street.  The hosts supplied ample liquor and Mardi Gras beads so we tossed them from the Royal Sonesta balcony with careless abandon to disinterested stragglers on the street below. No flashing or outrageous behavior to be seen, regrettably. The Sonesta is a 4 star hotel they say. What 4 stars mean on a zero star place like Bourbon Street is beyond me.

The Informex experience varies depending on whether you are a buyer or a seller and if you make a good buy or sale. If you are a buyer, there are lots of free dinners at Antoine’s and the like. If you are a seller, you buy lots of expensive dinners.

There was a lot less trade show junk as in years past. Vendors would give away logo festooned trinkets to ingratiate themselves to passersby (or more realistically, their children). A waste of money usually.

I will say that it is possible to consummate deals, agreements, or understanding in a solid face-to-face sit-down with another party. Far faster information exchange and superior to email or video conferencing. Often you can talk to a decision maker in the form of a CEO or sales manager and shake loose a logjam that has been holding up progress.

The other trip was to Long Island for a campus visit. We stayed in a 3.5 star hotel in a 1 star location. The Long Island Railroad (LIRR) was indispensable for getting into Manhattan. The taxi’s in Nassau county apparently don’t have meters- ask about the fare first. The high point was taking in a Broadway show, “If/Then” starring Idina Menzel at the Rodgers Theatre on West 46th Street. Great show. Menzel has some pipes, that’s for sure.

A less than great show was the Empire State Building experience. The view was nice, once you get to the 86th floor. The in between was an expensive and kitschy meandering from a B-grade SkyRide to a walk through the self congratulatory “museum” on the 80th floor. I won’t discuss my raspy encounter with security while trying to sit on the floor.

I have spent some time researching basic magnesium chemistry. Not anything synthetic but more safety and thermochemically related. I am not able to give a lot of particulars motivating the study, but I can say that one should consider that nitrogen over activated magnesium may not be as innocent as you think. While lithium is widely known to react with nitrogen gas to form a passivating nitride layer, the reaction of dinitrogen with magnesium is rarely encountered.

Activated magnesium residues from a Grignard or other magnesium metallation reaction may self-heat to incandescence under a nitrogen atmosphere in the right circumstances. Activated residues left isolated on the reactor wall or other features in a nitrogen blanketed reactor during an aqueous quenching procedure may self-heat to incandescence. In the presence of reactive gas-phase components like water vapor in nitrogen, activated metals can self-heat over an induction period of minutes to hours or longer.

Many metals, including magnesium and aluminum, can be rendered kinetically stable to air or humidity by the formation of a protective oxide layer. Once heated to some onset temperature by a low activation reaction, penetration of the protective layer by reactive gas composition can occur, leading to an exothermic reaction.

Performing a “kill reaction” or a quench of a reactive metal at the bench or at scale is always problematic and requires the skill and close attention of the process chemists and operators. I guess what I’d like to pass on is that nitrogen is not an innocent spectator in the presence of finely divided, activated magnesium. Humid nitrogen can support a combustion reaction to produce nitrided magnesium once preheated to an onset temperature.

If you mean to kill any reactive residues, it is important to apply the quenching agent in such a manner that the heat generated can be readily absorbed in the quenching medium itself. A good example of a quenching agent is water. Often a reactive must be killed slowly due to gas generation or some particular. Adding a quenching agent to a solution or slurry by slow feed or titration may be your best bet. If you have another vessel available, a feed to a chilled quenching agent will also work.  Dribs and drabs of water on a neat reactive material will lead to hotspots that may be incendive.

The fouling of public waters in West Virginia by 4-methylcyclohexanemethanol (MCHM) is regrettable and my heart goes out to all of the families whose lives have been and are disrupted by the spill. In my judgment the descriptions of the substance found in Wikipedia and ChemSpider seem very evenhanded given what is known presently about the toxicology of the substance. The SymBioSys LASSO numbers found in ChemSpider are reassuring in the sense that the structure of MCHM does not line up well with the receptors in the list. The low scores are suggestive of substrate mismatch with these receptors based on calculation. That is a good thing. So is the relatively high flash point of 80 °C.

There are several uses of this substance. At the large scale its use has been patented as a frothing agent for coal beneficiation (US 4915825). That patent is now expired. It is useful for separating coal particles from inorganic mineral particles. Other uses include the preparation of ester derivatives to produce plasticizers either as a stand alone ester or, as a listing in SciFinder shows, a hydrophobic co-monomer.

From what I have heard in the media, the secondary containment failed, allowing material to discharge into the nearby river. This is easy to figure out. A visual inspection by plant EH&S should have noticed failure of the secondary containment during periodic inspection and flagged it for repairs. The US Chemical Safety Board is investigating and will eventually publish a finding.

It seems to me that the people of WV must be willing to publically demonstrate en mass if anything is to change there. The lack of regulatory oversight on facilities like this is not surprising. It is exactly as intended by the power brokers of the state.


Blog Stats

  • 503,466 hits