You are currently browsing the category archive for the ‘Education’ category.

I’ve had this notion (a conceit, really) that as someone from industry, I should reach out to my colleagues in academia in order to bring some awareness of how chemistry is conducted out in the world.  After many, many conversations, an accumulating pile of work in ACS activities, and a few visits to schools, what I’ve found is not what I expected. I expected a bit more curiosity about how commerce works and perhaps what life is like in a chemical plant. I really thought that my academic associates might be intrigued by the wonders of the global chemical manufacturing complex and product process development.

What I’m finding is more along the lines of polite disinterest. I’ve sensed this all along, but I’d been trying to sustain the hope that if only I could use the right words, I might elicit some interest in how manufacturing works; that I could strike some kind of spark.  But what I’ve found is just how insular the magisterium of academia really is. The walls of the fortress are very thick. We have our curricula firmly in place on the three pillars of chemstry- theory, synthesis, and analysis. In truth, textbooks often set the structure of courses.  A four year ACS certified curriculum cannot spare any room for alternative models like applied science. I certainly cannot begrudge folks for structuring around that reality.

It could easily be argued that the other magisteria of industry and government are the same way.  Well, except for one niggling detail. Academia supplies educated people to the other great domains comprising society.  We seem to be left with the standard academic image of what a chemical scientist should look like going deeply into the next 50 years. Professors are scholars and they produce what they best understand- more scholars in their own image.  This is only natural. I’ve done a bit of it myself.

Here is my sweeping claim (imagine the air overhead roiled with waving hands)-  on a numbers basis, most chemists aren’t that interested in synthesis as they come out of a BA/BS program. That is my conclusion based on interviewing fresh graduates. I’ve interviewed BA/BS chemists who have had undergraduate research experience in nanomaterials and AFM, but could not draw a reaction showing the formation of ethyl acetate.  As a former organic prof, I find that particularly alarming. This is one of the main keepsakes from a year of sophomore organic chemistry.  The good news is that the errant graduate can usually be coached into remembering the chemistry.

To a large extent, industry is concerned with making stuff.  So perhaps it is only natural that most academic chemists (in my sample set) aren’t that keen on anything greater than a superficial view of the manufacturing world. I understand this and acknowledge reality. But it is a shame that institutional inertia is so large in magnitude in this and all endeavors.  Chemical industry really needs young innovators who are willing to start up manufacturing in North America. We could screen such folks and steer them to MIT, but that is lame. Why let MIT have all the fun and the royalties?  We need startups with cutting edge technology, but we also need companies who are able to make fine chemical items of commerce. Have you tried to find a brominator in the USA lately?

The gap between academia and industry is mainly cultural. But it is a big gap, it may not be surmountable, and I’m not sure that the parties want to mix. I’ll keep trying.

I know public school teachers very well. There is much talk about the kind of job public school teachers are doing these days. Much of the discussion is very negative.  A lot of people seem to think that American public school education is in some kind of decline.  Conservatives in particular seem to have a good deal of criticism to direct at public school teachers.

While I suspect that this grumbling on the right has more to do with vengeful, angry little boys who have grown to be vengeful, angry men, I’ll set this hypothesis on the shelf for some more aging.

In Coloado we have an annual test battery for public school students called the CSAP’s.  It was an initiative set forth by conservative legislators who have a very negative view of public education in general and of teachers unions in particular.  The CSAP’s start tomorrow in fact.  My 9th grade kid will spend the next week taking them. 

It is funny. No matter how tight the legislation is, people will always find a way to game the system.  I know of one principal who was selected to open a brand new elementary school nearby.  While at his previous elementary school in a poor neighborhood, he had access to the students CSAP scores. Prior to his departure he contacted the parents of the top 70 or so students and invited them to come to his new school in a more affluent neighborhood. Nearly all of them did, leaving the previous school in the lurch.  Test scores plummeted at his previous school last year because of this. The parents of the recruited students had a good many volunteers among them. The level of volunteerism dropped substantially as well, adding to the workload in a school already depleted of hourly teachers aids.

Yes, the aforementioned principal seems guilty of some kind of malfeasance or corruption. He’s gaming the system. But he fell out of the sky into a system begging for gamesmanship.  He did it to pave his way into a superintendant slot someday and I’ve no doubt that he’ll get it.

The great fallacy of this issue in the public forum is that it is up to teachers alone to keep kids on track.  Having been married to a special education teacher I can say that there are a great many parents producing kids that are improperly wired, emotionally disturbed, sociopathic, and/or neglected or abused.  Many kids go to school hungry and go home to high stress environments where there is rampant drug abuse, alcohol, and family violence. 

It is not uncommon for some elementary students to be the only family members who can speak English.  Parents in such homes are not able to help with home work. They are not able to communicate with the schools owing to cultural aversion to such contact or because they are undocumented.

I believe that our culture has changed considerably since my age cohort was in public school.  College was a distant aspiration for many of us.  College was not needed to work in the trades. We could get on-the-job training or attend some kind of trade school.  Or, join the military.  These were the options. We had been to the moon, tamed the atom, and built massive industrial capacity for manufacturing an ever growing array of widgets and medicines.  Arguably, something was working well if industrial output is the measure.

But over time, with greater affluence in the US and abroad, the technology gap between the US and other nations began to shrink. Other cultures were developing their own magic dust and secret sauce.  The advantages of the US system began to diminish relative to other cultures. But the one thing that didn’t change is the bell curve.  As a population we still produce offspring who populate the bell curve of abilities and interests. 

I suspect that we have begun to intepret the “below 50th percentile” population in the various bell curves in a most disturbing way. Could it be that we are interpreting the very existance of the low academic achieving population as some sort of educational or societal failure?  Are we expecting modern education to skew the curve toward the high end against the natural spread of abilities and aptitudes in our culture?   Is the notion of excellence skewed towards academic achievement rather than the myriad other activities that make a productive life? Is high academic achievement the only acceptable result of education of our population? 

Not everyone needs to be a scientist or an engineer or astronaut.  We need to continue to identify youth who have such interests and aptitudes and carefully cultivate them toward such opportunities.  But we also must pay attention to those who have more ground based aspirations and abilities and value them just as highly.  It is like a food web.

The notion that we should engineer our schools to produce more super achievers is faulty and unfair to the 99 % who won’t become scientists or astronauts.   Even if we could multiply the population of scientists, engineers, and astronauts, the economy cannot accomodate them. Such professions are near the apex of the career pyramid.

I have come to believe that US culture has failed a large number of its youth.  Just look at the rates of incarceration in the USA.  A culture truly concerned about the wellbeing of its individuals wouldn’t have a few million of them in jail.  Could it be that the conditions in which we imprison citizens reflects what we truly think about individuals?  I think the current malaise in public school education manifested as high dropout rates and low achievement  and the epidemic of convicted felons may be connected as part of a larger failing of our society.

Make magazine is one of my very favorite publications. It’s made for hillbilly engineers and aspirants like myself.  Their Maker Shed Store offers kits as well as plans for making all sorts of cool gadgets. Check out this Berliner Gramophone kit and this vacuum tube radio kit.  

Kit building and garage engineering are important activites for aspiring young scientists. We senior scientist types should be on the ready to mentor local high school students in their bid to learn about technology from the ground upwards.

Electronic experience is invaluable to all experimentalists- physicists, chemists, geologists, biologists, etc- and is a subject of lifelong utility. Many students do not have peer groups or family members who can help them get into this subject.

As a junior high school kid, I worked on TV sets (tube electronics) and acquired some electrical and mechanical ability in doing so. I actually fixed a few problems, surprisingly. A family friend had a TV repair shop (remember those?) and as a result I had a steady supply of TV chassis to take apart for my collection of parts like potentiometers and variable capacitors.

Like most kids rippin’ stuff apart and eyeing the construction methods I gained valuable electrical insights and personal experience with electrical current.  Like the time I discharged a picture tube through my hand while trying to remove a flyback transformer from my grandparents color TV. It was great lesson in capacitance and isolated static charge. As my grandparents sat on the Davenport and watched, they heard a sudden and involuntary grunting noise burst from my mouth as I hurled myself from a squatting position by the opened console TV set and backwards across the room. I probably absorbed more joules of energy from landing on my backside than the joules absorbed by my hand. Luckily I was not burned. The next day I learned how to properly discharge the aquadag in the picture tube.

It is nothing at all like tangling with an vicious animal who might stand there after the altercation spent and panting, wondering in its little badger brain how to tear an even bigger chunk out of your leg. A discharged electrical appliance bears the same silent affect before as afterwards. It’s wicked electrons are inanimate and unparticular in their singular drive to find ground. An unexpected jolt from a device is much like a magical experience. It comes from nowhere and everywhere and is over in the blink of an eye. Afterwards you stand there in shock and awe of the effect of even modest amounts of energy.

The impulse to do science is also the impulse to find boundary conditions of phenomena. Where are the edges? How does it switch on or off? You have to be willing to leave some skin in the game to find out about things.

So it happens that my kid is in 8th grade and is studying chemistry for the first time in earnest. As luck would have it, the kid’s teacher is of Haitian extraction and is on some kind of leave of absence either due to illness or possibly because 3 family members perished in the quake. I don’t know. This fellow seems to be a good teacher.

His replacement, however, is not very good. In fact, his replacement is … awful.

For the first time, I had a serious discussion with a principal about a teacher’s performance. The principal is apparently aware of the substitutes classroom foibles and sins of omission. The principal’s own son is a student in that class and so he has a personal interest in the matter.

So, after some time with the kid at the whiteboard in our basement last night, it dawned on me that I had completely forgotten how utterly strange atomic theory and the chemical phenomena that derive from it really are. It is all quite abstract and maybe even a little weird.

The curriculum gives some emphasis to understanding the concept of pH. Alright. But this requires some ideas about logarithms and exponents. Then there is the matter of chemical equilibrium. While kids are wrestling with the math, you are also trying to tell them that only a very small number of water molecules actually come apart into ions. But the kids need to be comfortable with the notion of ions and charge.

But, what makes hydrogen ion different from hydroxide ion, really?  And why does hydroxide ion have the negative charge? How is it that acids corrode iron to form H2, but hydroxide does not? What does it mean to be an acid? What does it mean to be a base?

You can try to use structural models of sulfuric acid rather than line formulae like H2SO4 to appeal to the idea that these are little things with attachments that do things. One could argue that it is a bit more concrete that way- little structures with parts that are detachable. But as soon as you start drawing structures, you run into a rats nest of intermeshed concepts relating to bonds and lone pairs. Then there is the bloody octet rule, covalency, and orbitals!!!

For crying out loud!! How does anybody learn this stuff?? The learner has to absorb 20 abstract concepts almost simultaneously to begin to “get” chemistry.  Even worse, if a chemist/parent teaches the kid about a concept, almost certainly it will not mesh with curriculum, leading to confusion and tears for the teacher and the student.

I taught orgo to college sophomores, but evidently 8th grade chemistry eludes me. I’m just too dense to grasp the level of abstraction they will accept. Oh!  To have an hour with Piaget!

I couldn’t resist a sarcastic allusion to post-modernism, whatever the hell that is. What could possibly be under such a bullshit heading? Well, all of my tramping around chemical plants from Europe, Russia, North America, and Asia as well as local mines and mills keeps leading me to an interesting question. Exactly who is being served in the current course of chemistry education? Is it reasonable that everyone coming out of a ACS certified degree program in chemistry is on a scholar track by default? Since I have been in both worlds, this issue of chemistry as a lifetime adventure is never far from my mind.

What are we doing to serve areas outside of the glamor fields of biochemistry and pharmaceuticals? There are thriving industries out there that are not biochemically or pharmaceutically oriented. There is a large and global polymer industry as well as CVD, fuels, silanes, catalysts, diverse additives industries, food chemistry, flavors & fragrances, rubber, paints & pigments, and specialty chemicals. There are highly locallized programs that serve localized demand. But what if you live away from an area with polymer plants? How do you get polymer training? How do you even know if polymer chemistry is what you have been looking for?

Colleges and universities can’t offer everything. They attract faculty who are specialists in areas of topical interest at the time of hire. They try to set up shop and gather a research group in their specialty if funding comes through. Otherwise, they teach X contact hours in one of the 4 pillars of chemistry- Physical, inorganic, organic, and analytical chemistry- and offer the odd upper level class in an area of interest.

Chances are that you’ll find more opportunities to learn polymer chemistry as an undergraduate in Akron, OH, than in Idaho or New Mexico.  Local strengths may be reflected in local chemistry departments. But chances are that in most schools you’ll find faculty who joined after a post-doc or from another teaching appointment. This is how the academy gets inbred. The hiring of pure scholars is inevitable and traditional. But what happens is that the academy gets isolated from the external world and focused on enthusiasms that may serve civilization in distant ways if at all. The question of accountability is dismissed with a sniff and a wave of the hand of academic freedom. Engineering departments avoid this because they are in constant need of real problems to solve. Most importantly, though, engineers understand the concept of scarcity in economics. Chemists will dismiss it as a non-observable.

One often finds that disconnects are bridged by other disciplines because chemistry is so narrowly focused academically. It would be a good thing for industry if more degreed chemists found their way into production environments. I visited a pharmaceutical plant in Taiwan whose production operators were all chemical engineers. Management decided that they required this level of education. But, why didn’t they choose chemists?  Could it be that they assumed that engineers were more mechanically oriented and economically savvy?

Gold mines will hire an analyst to do assays, but metallurgists to develop extraction and processing. Are there many inorganic chemistry programs with a mining orientation? Can inorganikkers step into raw material extraction from a BA/BS program or is that left to mining engineers?

In my exploration I am beginning to see a few patterns that stand out. One is the virtual abdication of  US mining operations to foreign companies. If you look at uranium or gold, there are substantial US mining claims held by organizations from Australia, South Africa, and Canada.

So, what if? What if a few college chemistry departments offered a course wherein students learned to extract useful materials from the earth? What if students were presented with a pile of rock and debris and told to pull out some iron or zinc or copper or borax or whatever value may happen to be in the mineral?

What if?? Well, that means that chemistry department faculty would have to be competent to offer such an experience. It also means that there must be a shop and some kilo-scale equipment to handle comminution, leaching, flotation, and calcining/roasting. It’s messy and noisy and the sort of thing that the princes of the academy (Deans) hate.

What could be had from such an experience? First, some hours spent swinging a hammer in the crushing process might be a good thing for students. It would give them a chance to consider the issues associated with the extraction of value from minerals. Secondly, it would inevitably lead to more talent funneling into areas that have suffered from a lack of chemical innovation. Third, it might have the effect of igniting a bit more interest in this necessary industry by American investors. The effect of our de-industrialization of the past few generations has been the wind-down of the American metals extraction industry (coal excluded).

If you doubt the effect on future technologies of our present state of partial de-industrialization, look into the supplies of critical elements like indium, neodymium, cobalt, rhodium, platinum, and lithium. Ask yourself why China has been dumping torrents of money into the mineral rich countries of Africa.

I can say from experience that some of the most useful individuals in a chemical company can be the people who are just as much at home in a shop as in a lab. People with mechanical aptitude and the ability to use shop tools are important players. Having a chemistry degree gives them the ability to work closely with engineers to keep unique process equipment up and running efficiently.

Whatever else we do, and despite protestations from the linear thinkers in the HR department, we need to encourage tinkerers and polymaths.

This kind of experience doesn’t have to be for everyone. God knows we don’t want to inconvenience Grandfather Merck’s or Auntie Lilly’s pill factories. Biochemistry students wouldn’t have to take time away from their lovely gels and analytical students could take a pass lest their slender digits become soiled. Some students are tender shoots who will never have intimate knowledge of how to bring a 1000 gallon reactor full of reactants to reflux, or how to deal with 20 kg of BuLi contaminated filter cake. But I hasten to point out that there are many students with such a future before them and their BA/BS degree in chemistry provides a weak background for industrial life.

A good bit of the world outside the classroom is concerned with making stuff.  I think we need to return to basics and examine the supply chain of elements and feedstocks that we have developed a dependence upon. American industry needs to reinvest in operations in this country and other countries, just like the Canadians, South Africans, and Australians have. And academia should rethink the mission of college chemistry in relation to the needs of the world, rather than clinging to the aesthetic of a familiar curriculum or to the groupthink promulgated by rockstar research groups. We need scholars. But we also need field chemists to solve problems in order to make things happen.

A friend is a tenured prof at a local university and teaches the 9 AM organic section. My friend lamented the consumer behavior of students in O-Chem and mentioned getting slaughtered on some internet ratings site. Tenure is not an issue for this prof, but student evaluations are still a big deal.

The question my friend has trouble with is this jewel- “Is this going to be on the test”? This arouses considerable frustration and ill humor. Some profs have no taste for this cat & mouse stuff and will be upfront with what is on the exam. Others are more elusive and Darwinistic. One wonders if these lone standard bearers could have excelled on their own exams when they were in school.

We discussed the possibility of suitable replies that are courteous but firm. There is no need or benefit to a smackdown for insolence. Basically, students need to recognize the main themes of the chapters and answer reasonable questions therefrom. The key is to do the problems. That has always been the key to orgo.

Some have been scornful about “teaching from the book” and supplement their curriculum with content that suits their fancy. I think this is fine for certain upper level coursework. Where this strategy fails is when students need to comprehend the pillars of chemistry for later and more advanced concepts. Then other content becomes a kind of distracting indulgence. Chemistry is vertical.

The problem is that the academic expectations may ratchet up a few notches in college. Students who may be accustomed to getting good grades without too much sweat are often mortally threatened by the prospects of getting less than an A. But this is just a part of the total growth experience and a good prof will be sensitive to this frailty. The trick is to help these students find their own path and go for it.

Rhodium bullion opened at US$1700/toz today on the EIB.  After months of steeply depressed prices,  demand for this catalytically important metal has begun to perk up.  A substantial fraction of all rhodium demand is derived from automotive catalytic converters. Decide for yourself what this ramp-up in pricing really means.

Elsewhere in rhodium news, as a result of General Motors bankruptcy filing, the bankruptcy court has upheld the request of GM to drop its contracts with Stillwater Mining.  The Montana-based mining outfit is the only US producer of platinum group metals (PGM’s). Stillwater expects this decision to result in a $5-10 million hit in sales.

Colossus Minerals has announced an extraordinarily rich PGM find at their Serra Pelada Project in Brazil.  Below is a summary of the find-

– Systematic sampling and assaying of drill core from the Central
  Mineralised Zone at Serra Pelada has yielded platinum (up to 299 g/t),
  palladium (up to 387 g/t) rhodium (up to 7.7 g/t) and iridium (up to
  4.9 g/t), grades among the highest on record

– High grade PGE-gold intervals include FD-072:
  7.88 metres @ 406.4 g/t gold, 98.4 g/t platinum , 115.7 g/t palladium,
  2.74g/t rhodium, 1.52g/t iridium, 0.19g/t ruthenium and 0.03g/t osmium
  1.87 metres @ 1431.3 g/t gold, 248 g/t platinum , 321.4 g/t palladium,
6.50 g/t rhodium, 4.21g/t iridium, 0.39g/t ruthenium and 0.10g/t osmium

– Platinum to rhodium ratio varies systematically with the gold to platinum
  ratio, ranging from around 10:1 to over 40:1. In this range, rhodium
  values will contribute significantly to the value of high PGE subzones at
  Serra Pelada

– The assay data indicate high PGE subzones in more southerly parts of the
  Central Mineralised Zone, where Colossus has only conducted limited
drilling to date and also the possible continuity of a high Au-PGE subzone
  over 200 metres strike length.

The Serra Pelada gold deposit was discovered in 1979 and lead to the largest gold rush Latin America has known. It has since been found to contain highly enriched mineralizations of Au-Pd-Pt along with enrichments of other PGM’s.

After supper last night I parked in front of the tubule and switched on the Discovery Channel. There was an intriguing program on the Cueva de los Cristales (Cave of Crystals) in Mexico. The Naica mine has become famous for its gigantic selenite crystals (calcium sulfate). National Geographic filmed a program on these wondrous crystals and it has been broadcast on the Discovery Channel.

What has raised my ire on this is not the production value. As usual, the cimematography was superb. What is disappointing is the story they chose to tell.

What I have noticed in the public science programming world is a particular weakness that quietly infects writers, directors, and producers. The weakness has to do with the fear of boring their audience. Rather than risk a pandemic of somnolence, writers kick up the script a notch with undercurrents of intrigue and a suggestion of danger for the intrepid parties crawling in the muck or harassing gators.

That’s fine. It never hurts to plan for short attention spans in the audience. But what suffers is a sense of proportion. When the focus shifts from the subject of the expedition to the members of the expedition, the program crosses the line into the tawdry world of show business.

Yes, it is quite hot in the cave. Yes, heatstroke is an issue to be wary of. But, what about the crystals?? What are they made of? Where is the water from which they were precipitated from? How does crystallization work?

And, where is the chemist on the team? National Geographic brought together a geologist, a planetary astronomer, a nuclear physicist, a biologist, and a few others who were not identified. This is a common omission on the part of people outside of the chemical sciences. Nobody knows what the hell we do!

For the showbiz effect, they brought in a planetary astronomer, Dr. Chris McKay, to examine the cave for possible implications on Martian exploration and the Evolution of Life. To media people, science equals- 1) Space Science, 2) Medicine, 3) Computer Science, and 4) oh, did I say Space Science?

It turns out I used to know Chris McKay. He was a TA in an astronomy course I took at the University of Colorado ca 1978. He was a geat guy and, unlike other misfits misanthropes bed wetters grad students in the astro/geophysics program, an attentive and caring instructor. He was (and is) a true believer in space exploration. We spent a long and chilly evening together in the Sommers Bosch Observtory at CU manually guiding the 24 inch telescope on a guide star for some lengthy time exposures of a string of galaxies. We used 3×5 Tri-X plates hypered in H2.

This showbiz reflex is a chronic condition and I am sorry to see National Geographic succumb to it.

A friend who is presently on sabbatical has started a blog about his academic experiences in primarily undergraduate institutions (PUI). It is called Sabbatical Epistles. He mentions a key phrase that is being batted around; it is Transformative Research. According to the NSF, transformative research is-

research that has the capacity to revolutionize existing fields, create new subfields, cause paradigm shifts, support discovery, and lead to radically new technologies.

The context of the use of this phrase was that research funding at PUI’s will increasingly be put to the merit test of transformative research. As such, research into chemical synthesis at PUI’s is especially at risk of not qualifying for funding. I suppose the concern is that multistep synthesis projects for undergrads requires lots of time and skills that undergrads do not have.

Who is against transformative research? It is like motherhood and apple pie. Everybody wants to fund or be part of this kind of effort. We should always ask that research funds be put towards this end. But there is more to it than just an affirmation of meritocracy.

What I sense is that the golden age of undergraduate research programs may be fading into some darker period of scant interest.  The scientific establishment continues to grow larger with each passing year. And in parallel, major research universities continue to add programs, courses, grad students, faculty, bricks and mortar, and administration based on the allocation of grant money. Big institutions depend on grant money to a large extent. 

As grant money gets tighter, program requirements will increasingly filter the small fish from the big fish. Large institutions have many alumni in influential positions and in the end, the programmatic mind-set of large research institutions in conjunction with the definition of success as understood by administrators of first tier schools will win the day. 

There is a pecking order to this. A kind of snobismus. And undergraduate research is not too high in the pecking order.  In relation to undergraduate research in the area of synthesis, in most schools this is the only opportunity for an undergrad to get some advanced experience in the synthetic arts. If you have tried to hire a synthetic savvy BA/BS, you know they are hard to find. In my experience, most synthetikkers want to go to grad school. They want more.

Just in case anybody is listening, I want to make a pitch for continued and stronger funding of undergraduate research. As a student, it changed the course of my life in terms of growth and development. As a former mentor of undergraduate researchers as a post doc and prof, I can say that nearly all of my students are now either PhD’s or MD’s. They are all contibuting greatly to the benefit of our society in industry, teaching hospitals, and academia. I am proud of them and I’d do it over in a heartbeat.  The pedagogy isn’t in dispute, I suppose. But the method of funding is.

Unlike many of my colleagues in the Chemical Industry, say in New Jersey for instance, Th’ Gaussling is able to enjoy a pleasant country drive to and from work every day. Among the many sights to enjoy is Spoolhenge. This curious archeological artifact is thought to have been constructed by ancient electricians in the early Cupracene Age of the Sparkezoic Era.

Who were these people? What strange rituals did they perform in this maze of paleospools? Only a few crude wirenuts fashioned out of elk antler remain in the soil surrounding these ruins.

Writer and amateur paleophrenologist Anders van der Klopp suggests the ruins may have been part of a temple built by ancient astronauts who crash landed on earth in the distant past. Van der Klopp’s panspermia theory is not taken seriously by mainstream paleophrenologists who balk at the idea of electricians in space. Perhaps one day we will solve the mystery.




Blog Stats

  • 542,110 hits