You are currently browsing the category archive for the ‘Chem Resources’ category.

I am asking this question because the transition away from fossil fuels will have a serious knock-on effect on a very large sector of the global economy. Of the total liquid hydrocarbon production, 14 % goes to the petrochemical markets. Of natural gas production, 8 % goes to petrochemicals.

There is a serious complication connected with the idea of shutting down the combustion of hydrocarbon fuels. The elimination of oil and gas combustion activity means that crude oil production drops precipitously and therefore so would refining. Oil refineries are designed to maximize the volume of their most profitable products while minimizing their cost to manufacture. I refer to gasoline, diesel and aviation fuel. Petrochemicals come from oil and gas. Their economics ride on the coattails of fuel production to some extent in terms of scale. Refineries are physically large operations so as to operate with the maximum economy of scale. Maximum economy of manufacturing scale drives consumer prices downward.

Refineries produce much more than fuels. They produce asphalt, lubricating oil, polymer raw materials, petrochemicals for pharmaceuticals and other raw materials for thousands of products we take for granted. There are countless uses for petrochemicals beyond throw-away plastic bottles and bags. Just look around where you are sitting this very moment. Unless you are in Tierra del Fuego or Antarctica, you can’t help but see examples of hydrocarbon applications.

The Future of Petrochemicals, IEA
Flow of oil and gas streams to chemical product production. Source: The Future of Petrochemicals, IEA.

Could refineries adapt to the loss of a large fraction of their fuels production and still produce petrochemicals? Engineering-wise, I’d say yes. But as far as economics go, that is a harder question to answer. Company officers have a fiduciary responsibility to the stockholders. This is a baked-in feature of corporate business. The promise of ever-increasing margins and volumes is part of that. Switching gears towards sustaining the petrochemical sector in the face of declining fuel sales is natural in one sense, but if it involves declining EBITDA over time, it could be disastrous for the stock market. Petrochemical prices might have to climb drastically to sustain earnings. Players in the global oil & gas market are extremely twitchy. The mere suggestion of a potential problem is enough to send prices soaring or diving. Luckily, a wind-down of fuel production will take some time during which the players might be able to compensate.

Look around you. How many consumer goods come in plastic containers or plastic film-coated paper? All of our electronic devices are built into casings of some sort, most of which have plastic or fiberglass (resin impregnated glass fiber) components. The list is endless. For many or most of these things to stay on the market, a substitute material will be needed to replace the hydrocarbon-based materials. Wooden casings for computer monitors and iPhones? What about paint? Paint is loaded with hydrocarbon components.

A vast number of products we take for granted use hydrocarbon materials in some way. Perhaps renewable plastics will scale to meet certain demands. Recycling applies only to those plastics that can be melted- the thermoplastics. Thermoset plastics like melamine cannot be melted and so cannot be recycled. Recycling only works if consumers close the recycling loop. Plastics must be carefully sorted in the recycle process. When a mixture of plastics is melted, the blend can separate like oil and water producing inferior product. National Geographic has a good web page describing recycling.

Some plastics such as clear, colorless polyethylene films are usually pure polymer. Most synthetic polymers are colorless. In general, any synthetic polymer that is colored has pigments in it. Black plastic is loaded with soot for instance. Many polymer films for packaging are multilayered with different types of polymer layered together.

Waste thermoplastic with food residues is very problematic, especially those with oil residues. Waste plastic for recycle must be clean. Multilayer plastic films are not suitable for recycling either.

Source: Technical Bulletin, Saint Gobain. Multilayer film structure with 3 different films and two tie layers between them. The Nylon layer provides toughness and tear resistance. The polyethylenevinyl alcohol (ethylene-vinyl chloride copolymer) layer (EVOH) blocks the transmission of oxygen and carbon dioxide. Low density polyethylene (LDPE) layer provides broad chemical compatibility along with biocompatibility for safe handling of biopharmaceuticals. Not all polymers are compatible with melt bonding. The tie-layer is a melt-bondable adhesive polymer film that hold the layers of polymer into a single film. The tie layer polymer is often a polyethylene film that has a surface layer of organic acid or anhydride groups that can bind to other polymers by melt bonding.

Other additives such as plasticizers are present in flexible plastics like polyvinyl chloride (PVC) or other compositions where suppleness is important. Pure PVC is rigid. Additives are an industry unto its own. The varieties and grades in the plastics business is mind boggling. The variety of plastic compositions is too diverse to allow recycling of all plastics.

Polymer manufacturing is likely to continue indefinitely. There is simply too much money at stake for the big oil & gas and petrochemical players to deconstruct themselves to a large extent. They will, however, follow the consumer, but how far?

So, the question is this- for the sake of keeping a viable petrochemical stream in place while hydrocarbon fuel consumption declines, how much hydrocarbon fuel can we burn per year without exceeding the capacity of the earth to absorb the CO2 produced? We want to lower the slope of the atmospheric CO2 curve enough to achieve a reasonable steady state. The global economy depends very much on the production and use of petrochemicals. People will generally avoid economic suicide.

Where is the balance point for a sustainable production of necessary petrochemicals and the decommissioning of hydrocarbon fuel production? I certainly don’t know.

One shining example of a scarce resource in need of conservation is the Rare Earth Elements (REE) series generally, and Neodymium, Nd, and Dysprosium, Dy, in particular. Nd is described as hard and not very malleable or ductile and Dy is very malleable. Both have a silvery metallic luster and similar chemistries forming +3 cation as the most stable cation. The REEs are often divided in a funny way. There are the Lanthanides which can be further subdivided into two subgroups – the light REEs from Lanthanum to Europium and the heavy REEs from Gadolinium to Lutetium. Of the lanthanides, heavy REE deposits are more scarce, but of the heavy group Dy is the most abundant.

Promethium is highly radioactive Lanthanide with a half-life of 17.7 years for the longest lived isotope, 145Pm. Interestingly, the mode of decay for this isotope is electron capture, sometimes called K-capture. Promethium has only a transitory existence due to its short half-life. The entire group of REEs share the ability to form +3 cations. This increases the difficulty of isolating pure elements from an ore since most ores contain multiple REEs. Worse, the +3 Lanthanides also have similar ionic radii allowing for them to substitute with each other in minerals. Similar ionic radii makes it a bit harder to isolate them.

The other subgroup comprises Scandium and Yttrium- sometimes called the Scandium group. In the periodic table all of the REEs are transition metals in Group 3.

For clarity, the periodic table below shows a yellow vertical column of two elements, Scandium and Yttrium. They are members of the REE group. The yellow row of elements below are the Lanthanide elements. All together they make up the REEs. The Lanthanide elements differ from the other two REEs in that they have f-orbitals with valence electrons.

Chemistry is about what valence electrons do. These are the electrons that interact with the world around the atom or molecule. All electrons in an atom or molecule spend their time in special regions of space called orbitals. Electrons in the outer valence level can be taken away or shared. If there is an empty space in the valence level, electrons can be dropped in. Valence electrons form chemical bonds. These electrons are chemically reactive because they are furthest from the nucleus and feel the least nuclear attraction. But their reactivity mostly disappears if the valence orbitals are full. Inert gases are inert because their valence orbitals are full. It is possible for empty low-lying orbitals to accept electron pairs from other neutral species like H2O, phosphorus compounds, carbon monoxide and the like. Metals can have both negatively charged and neutral species docked in place around a metal cation.

Removing a valence electron from an atom is called oxidation and dropping an electron into the valence level is called reduction.

Rare Earth Elements: Credit- http://www.ncpathinktank.org/rare-earths
This is NOT what an atom looks like. Electrons do not arrange themselves like this. Credit: https://www.chemguide.co.uk/atoms/properties/orbitsorbitals.html

Electrons spend their time in specially shaped regions of space around atoms and molecules called orbitals. We do not need to know where an electron is exactly at any given moment. The orbital shapes define where electrons spend 95 % of their time. Orbitals do not have sharp edges. They taper off into space. The image below is a more realistic representation of where electrons can be found. Orbitals represent regions where there is the largest probability of finding electrons of a certain energy. If you consider a spherical space surrounding an atom, you could say that the probability of finding an electron within is p=1. But due to the peculiar shape of the spaces where electrons spend their time, an electron is more likely to be in the space defined by spherical harmonics. Therefore, any given space within the sphere could be assigned a probability per cubic picometer of containing an electron, depending on its location. Probability per unit of volume can be referred to as probability density. It is the probability density represented by orbitals that is wavelike in quantum mechanics.

It turns out that we can describe the space electrons occupy if we apply the mathematics of a spherical harmonic series. The image below shows 4 levels of the series. The shapes define the space that electrons occupy around an atom. Each row represents a group of individual orbitals. Top to bottom, they are labeled s, p, d and f. The orbitals are filled with electrons theoretically in order from top to bottom rows as you move up the periodic table by atomic number, with each orbital holding as many as 2 electrons. Remember, orbitals are not physical objects. Each of them define a region of space in which one or two electrons spend their time. Also, there is some nuance in the energy levels of the orbitals. No matter though for this post.

Visual representation of a spherical harmonic series starting at the top and progressing down. Credit: https://en.wikipedia.org/wiki/Spherical_harmonics

Below is a chart showing atomic orbitals oriented in an xyz coordinate system. Interactions of orbitals between atoms or molecules very much depend on how they are oriented as they contact.

The common elements we are most familiar with have s, p and d valence orbitals around the nucleus. As we increase the atomic number of the elements we drop down the rows of orbitals on the periodic table, the valence electrons get further away from the nucleus where they are better shielded by the innermost electrons. The consequence is that the energy needed by the first valence electron to escape becomes smaller.

Neodymium magnetism comes from the 4 unpaired f-electrons with their individual spins aligned in the same direction giving the atom a large magnetic dipole moment. The unit crystal of Nd2Fe14B magnetizes along a preferred crystal axis that is difficult to change. So, the large magnetic dipole moment from the 4 unpaired electrons in each Nd atom in the unit crystal are locked in space.

We live in a time of permanent magnets with extraordinarily high magnetic field strengths. They’re called rare earth magnets and two REEs stand out in particular in this application- Neodymium (Nd) and Dysprosium (Dy). Nd is the primary REE in this type of magnet, but It turns out that up to 6 % of Nd can be replaced with Dy to increase coercivity and increase resistance to demagnetization. This is important for heavy duty magnet applications like windmills and electric cars. It is estimated that replacement of Nd with Dy in REE magnets amounts to ~100 grams of Dy per car. Based on Toyota’s planned output 3.5 million battery operated electric vehicles per year by 2030, the current reserves Dy would soon be exhausted.

Rare earth magnets are generally comprised of 3 elements; Neodymium, Nd; Iron, Fe; and Boron, B, proportioned according to the formula Nd2Fe14B. Dy is an optional component of these magnets.

So, obviously Dy is a highly desirable metal for efficient use of permanent RE magnets. Even among the REEs, Dy is a minor element. There are no known minerals having Dy as the major REE. The crustal abundance of Dy is 0.3 ppm and the recycle rate is <10%. The major reserve holders are China, Russia, and the USA. Incidentally, for some years now China has been disinclined to supply REE ore in favor of value added REE finished goods. This is in contrast to their buying copper ore from Chile or Peru in order to capture lower copper costs by doing their own refining. They know what they are doing.

Plainly, much is yet to be done in regard to putting a recycle loop in place for REEs in products. This is especially true for dysprosium. So, do we wait for the free market to respond when the situation is dire and the bulk of the REEs are already consigned to landfills around the world?

Note: For the sake of keeping the post light and airy, I’ve made some generalizations above. Of course there are exceptions and nuances. There always are.

Forward

This article amounts to a plea to analytical chemists, supervisors, and organizations who use perchloric acid to make the effort to understand its reaction chemistry, as an acid or salt, and the peculiarities of the numerous mixtures used in analytical sample digestion. If your organization uses standard methods of digestion via one of the many acid mixtures and temperatures, it behooves your organization to have at least one individual on site who understands a bit more than just the procedure. If there is an incident of some kind involving perchloric acid, be it a spill, splash, or worse, having a grasp of the real hazard presented before you is useful. It is possible to underreact or overreact to any given incident scenario.

I am not an analyst. My interest is to understand reactive chemical hazards and devise means for preventing the transition from hazard to danger. Whether someone uses perchloric acid or not makes no difference to me. I have no investment in perchloric acid. However, I’m greatly interested in users being informed.

Comments on Safety Training

Safety training is commonly executed as a result of company policy where documentation of satisfactory completion is collected and filed. For lab chemists this includes training sessions on chemical storage, fire safety, fire extinguisher training, hazardous waste practices and regulations, storm water regulations, company safety and health SOP training, building evacuation, general lab safety, and perhaps basic first aid.

Often safety training sessions are canned professional video presentations or a corporate home brew of PowerPoint slide shows followed by some Q&A and a quiz. It is what I refer to as infotainment. Attendees may watch a video with dramatized incidents while the voiceover describes what should have happened. This approach is not without merit or some success, but this passive approach may not be of lasting value. Furthermore, it is a very sketchy assumption that such passive training will result in proper decision making in an off-normal circumstance where hazard may transition to danger.

The military has solved this problem long ago by mastering the art of the drill. They realize that if you need people to respond in a particular way rapidly, they have to be trained and drilled. In times of peace, the military has the opportunity to train and drill to maintain operational readiness. This is one way to address the difficult problem of low probability, high consequence scenarios. Industry as a whole, however, may not inclined to offer a lot of free time to dedicate to training. Man-hours in drills subtract from productivity. In my opinion, much of industrial management suffers from a lack of imagination in this matter. Safety training and drills are cost overhead. But, what you lack in training hours may be made up for by effective mentoring.

We live in the age of OSHA regulations. Of importance to the process industry is Process Safety Management or PSM. The mission of OSHA is copied and pasted below.

With the Occupational Safety and Health Act of 1970, Congress created the Occupational Safety and Health Administration (OSHA) to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance.

The Wikipedia link below gives an excellent summary of OSHA regulations relating to the chemical process industry. PSM in 29 CFR §1910.119  titled Process safety management of highly hazardous chemicals, is a regulatory framework covering all aspects of safety management and threshold quantities (Appendix A) of highly hazardous materials. Whether your facility is operating at the PSM scale of operation or not, employers have a duty to assure a safe operating environment for their employees. In my view, PSM regulations frame a safety mindset and diligence that is useful outside of PSM reach. Given that a debilitating injury, fatality, explosion or major fire will bring the unblinking eye of regulators and possible litigation, sensible practices found in 29 CFR §1910.119 that are woven into your chemical safety SOPs are in the direction of goodness. Again, this is my view and should not be construed as legal advice. Your chemical safety plan is your responsibility alone.

Finally, a word to lab managers and supervisors. I cannot point to a ancient stone or a law of nature that commands that leaders be effective instructors and mentors. But I can throw an idea on the table which is that as a senior employee in a supervisory role, you have a moral obligation to your charges to make sure that they practice their art with diligence and in a safe manner.  The best way I know of is to train staff thoroughly in lab operations and have high expectations of your staff. Management by wandering around can be very effective in maintaining discipline and keeping tabs on your shop. Besides, you should be walking around and asking questions anyway.

HClO4 – The Meat and Potatoes

There is much to know about the chemistry of perchloric acid digestion beyond it’s renowned acidity and explosive potential. Appreciating the corrosivity and  close adherence to standard laboratory techniques are necessary but not always enough. One such circumstance begging for informed action is method development. In researching this topic I was a little surprised to find that many important details are buried in the primary literature. Worse, a few key references are downright difficult to obtain. By important details, I mean whatever information might help define the safe operating window for a given digestion, or, better put, under what circumstances might a digestion procedure transition from hazardous to dangerous.

The major supplier of perchloric acid and perchlorate salts in the USA is GFS Chemicals in Powell, OH. The founder of this company, G. Frederick Smith was, and remains posthumously through his writings, a top authority on the properties of this acid and numerous perchlorate salts as the result of his many decades of research. Laboratory quantities of perchloric acid can be had from GFS and the usual group of research chemical suppliers.

It is easy to find MSDS data and exemplar laboratory safety guides on your browser detailing sensible storage and use policy. Several found in google-space stand out in my opinion as comprehensive perchloric acid safety documents and SOP’s; UC Berkeley; Boston University; MIT; Harvard; British Columbia Code for Mines to name a few. Again, this is my opinion- form your own.  If your perchloric acid “policy” is limited to an MSDS document and perhaps a few safety statements found in a procedure, then I would urge someone in your organization to take it upon themselves to dig in a little deeper. Generate SOPs for all aspects of the perchloric acid life cycle in your facility.

There are many accounts of incidents with perchloric acid that should convince even the most refractory skeptic of the potential for a violent release of energy. There is a perchloric acid incident that stands out as an example of the dangers of a chemical ignorance.  It happened February 20, 1947, when a large and violent explosion killed 17 people and led the city of Los Angeles to specifically bar the use of perchloric acid (1)  through numerous sections of it’s zoning code.

The most common laboratory use of perchloric acid is in the analytical digestion of samples containing a matrix of organic matter, sludge, tissue, biomass or organic chemicals. There are a great many lab procedures to be found by an internet search including Chemical Abstracts (CAS), the AOAC Official Methods of Analysis manual, and ASTM relating to HClO4.  Numerous policy and prudent practices documents can be downloaded from well established institutions that outline some very sensible policies regarding the storage, use, and disposal of HClO4.  One particularly good source for sample digestion methods across the periodic table is from Inorganic Ventures. Kudos to Dr. Paul Gaines and this company for the quality of their products and their willingness to share their expertise in trace element analysis.

A search of Chemical Abstracts will turn up many research papers giving digestion procedures in the experimental section. However, it is not often made clear how the workers came upon their particular digestion conditions other than from a reference in an earlier procedure. This is because these papers are about the use and not about the chemistry of digestion. Most of the procedure writers will have done their diligence and provide warning about hazards. What may be omitted within papers that use the HClO4 procedure are the boundaries of safe operation and how the reactivity may vary with concentration and temperature.

For greater detail one must look elsewhere and well back into the 20th century. Much useful information on HClO4 and its salts is to be found in papers from the 1930’s thru the 1970’s.  Because of their energetic properties, the propellant and explosives folks usually expand on energetic materials including perchlorates, and yes, they go into some great and admirable detail (2). However these sources tend to be thermochemical in nature and perhaps not a lot of immediate help to a bench chemist.

Unlike many other reagents in the laboratory, perchloric acid can have a downside with immediate negative safety consequences. In particular, if one is aiming to develop a digestion procedure for a new type of sample, say, something with a mixed organic/inorganic matrix or certain heteroatoms compounds with nitrogen or sulfur, it behooves the chemist to take a serious interest in rooting out information about the safe operating boundaries of perchloric acid and what kinds of materials may be problematic. A perchloric acid MSDS will inform you of potential safety hazards, hazard classifications, etc., but a well researched and validated procedure can go far towards keeping you out of trouble. I would recommend that at least one person at your organization be more thoroughly educated in the chemistry of perchloric acid digestion, or wet ashing as it is called. Unlike some other strong acids, contact with organics may have immediate explosive consequences. And by explosive I mean violent, deafening, shrapnel-blasting detonations. Hazardous contact can include contact of hot concentrated acid on paper, on sample material, or even contact of perchloric acid vapor on a gloved hand passing through fumes.

There are some particularly comprehensive and broadly informative publications covering perchloric acid chemistry. A more recent work by John Long (3) of GFS is particularly insightful in regard to drawing a line between perchlorate salts and perchloric acid. The 1960 publication Perchlorates: Their properties, manufacture, and uses by J.C. Schumacher (4) contains an informative chapter (Ch 11) on perchloric acid safety. Perhaps the most useful reference is a book available from GFS (5) or Amazon titled Perchloric Acid and Perchlorates, by A.A. Schilt. The 2nd edition in particular contains a great many useful references.

On heating at ambient pressure, aqueous perchloric acid will concentrate by distillation to a constant boiling azeotrope of 72.5 % HClO4 and water. At this composition its number of waters of hydration is slightly greater than two. In the climb from ca 160 °C to a bp of 203 °C at 1 atm, the 72.5 % acid will transition from being “just” a hot super acid to a super acid and a potent oxidizer.

In the gas phase, this acid can decompose via a radical pathway leading to the evolution of Cl2, O2, H2O either abruptly or after an time interval (6). Note that when something quite hot abruptly decomposes to a greater number of moles of gaseous products, there can be plenty of potential for destructive pressure effects.

For the uninitiated, HClO4 is a “supermineral acid capable of complete dissociation in aqueous concentrations up to about 4 molar (7). The dissociated form in water is H3O+ ClO4-, or oxonium perchlorate. This is normal Brønsted acid behavior in water, but three things set this acid apart from others, even nitric acid: i) due to the extremely weak coordinating ability of the perchlorate anion, the acid proton is extraordinarily mobile and reactive; ii) at room temperature the anhydrous acid will at some point spontaneously explode; and iii) in concentrated aqueous form at elevated temperatures, say > 160 ºC, the acid becomes an increasingly potent oxidizer with temperature.

The perchlorate anion has a central chlorine atom, formally +7, that sits in a tetrahedral array of four O2- anions to make it anionic. On average the negative charge is spread over the surface of the symmetric anion making the negative charge diffuse with the enthalpy of formation unfavorable to close ion pairing. The perchlorate anion is only weakly attracted to a given cation like H3O+ or oligomers and as such, allows the H3O+ (or larger clusters) to reside in a solvent shell unencumbered by tight ion pairing, depending on the nature of the solvent. Perchlorate salts can have very high water solubility and, in the case of magnesium perchlorate, serve as an excellent desiccant. One exception to the high solubility of perchlorates is potassium perchlorate at only 1.5 g per 100 mL H2O at 25 °C.

  1. “Explosion at O’Connor Electro-Plating Corp.” LA Times, http://framework.latimes.com/2012/02/20/explosion-at-oconnor-electro-plating-corp/#/0       Site viewed on 12/22/16.
  2. Perchlorates: A review of their thermal decomposition and combustion, with an appendix on perchloric acid, G.S. Pearson; Rocket Propulsion Establishment; October 1968.   http://www.dtic.mil/dtic/tr/fulltext/u2/857556.pdf
  3. Perchlorate Safety: Reconciling Inorganic and Organic Guidelines, J.R. Long; Chemical Health and Safety, 2002, 9(3), 12-18. http://dx.doi.org/10.1016/S1074-9098(02)00294-0
  4. Perchlorates: Their properties, manufacture, and uses; J.C. Schumacher, editor; Reinhold Publishing, 1960. See Chapter 11, “Safety Precautions in Handling Perchlorates”, E. Levens, 187-222. Download pdf: Do not try to correct the misspelling in the url. https://archive.org/details/pwechloratesthei001740mbp?q=perchloric+acid+and+perchlorates+schilt
  5. Perchloric Acid and Perchlorates, Second Edition A.A. Schilt and L.C. McBride, 2003 https://www.gfschemicals.com/statics/productdetails/PERCHLORIC_ACID_AND_PERCHLORATES_496.html
  6. Thermal Decomposition of Perchloric Acid, Gilbert and Jacobs, Combustion and Flame, 1971, 17, 343-353. DOI: 10.1016/S0010-2180(71)80056-1
  7. Perchloric Acid and Its Salts- Very Powerful Catalysts in Organic Chemistry, Dalpozzo, Bartoli, Sambri, Melchiorre;  Chem. Rev, 2010, 110(6), 3501-3551.  DOI: 10.1021/cr9003488

According to E&E News, the government is releasing $560 million of a total of $4.7 billion to fund the cleanup of orphan oil and gas wells in 24 states. It is part of the Infrastructure, Investment and Jobs Act.

From the E&E article-

“Historic oil and gas activity in regions like Appalachia and the West goes back more than a century, with many old wells lost. Additionally, oil and gas price busts have left more wells abandoned, their original drillers out of business or difficult to trace. When left unchecked, those wells can release greenhouse gases like methane and pose combustion risks.

All told, states have flagged more than 10,000 high priority wells for cleanup, the first in line of a nearly 130,000 backlog of unreclaimed known well sites, Interior reported today. That number is expected to rise as federal funds bolster state efforts to identify hidden or lost orphans.”

According to a June 16, 2020, article in Reuters, drillers are required to pay a bond up-front to pay for remediation in case they go bankrupt. In reality, the system is a patchwork of state and federal regulations that are underfunded. The article goes on to say-

The U.S. figures are sobering: More than 3.2 million abandoned oil and gas wells together emitted 281 kilotons of methane in 2018, according to the data, which was included in the U.S. Environmental Protection Agency’s most recent report on April 14 to the United Nations Framework Convention on Climate Change. That’s the climate-damage equivalent of consuming about 16 million barrels of crude oil, according to an EPA calculation, or about as much as the United States, the world’s biggest oil consumer, uses in a typical day. (For a graphic on the rise in abandoned oil wells, click tmsnrt.rs/2MsWInw )

The whole thing is a century-long train wreck- we could have easily followed along as it happened. The extractive industries have a long history of leaving a hazardous and unsightly mess in their wake so there is nothing new here. Industry has socialized the cleanup cost and kept the profits.

It is pathetic that someone would even have to remind them to at least seal the damned well when they were done with it. Walking away from a well that is or could be venting natural gas and hydrogen sulfide is obviously unethical. Transfer of ownership or bankruptcy should be no excuse by statute.

States like North Dakota, for example, have statutes relating to wells having “abandoned well” status.

For various reasons, wells stop producing.  State law requires that the site be reclaimed and directs the Industrial Commission to oversee that process.

The upstream exploration and production (E&P) side of the oil & gas industry should collectively pay for this. However, like most businesses, they will only respond to the threat of added costs. But, we’re not asking them to split the atom. This issue could be solved at a single board of directors meeting at any E&P company.

Naturally, the oil & gas lobby will howl like banshees at the very notion of holding the industry responsible. Refiners and distributors of distillates, I think rightfully, will say that they are not at fault. So it has to be upstream.

But what about the owner of the mineral rights? Should they be free from liability? Not being a legal scholar, I can only surmise that this is old turf.

A modest excise tax on every barrel of oil or every million cubic feet of gas would accumulate into a sizeable fund over time. But would E&P companies just leave every abandoned well uncapped thinking that they have already paid for it? Hard to say. There would be legions of corporate cost accountants and executives working on it though.

American voters have yet to elect a congress or legislature that will write law to hold E&P oil & gas or somebody responsible for the blight that oil & gas brings. The industry lobby knows that all they have to do is float out the twin dementors of lost jobs and economic despair to frighten the public into submission. Works every time.

When Colorado tried to pass a ballot initiative recently to ban oil & gas well operations within some expanded distance from residential neighborhoods, the industry had employees on the streets protesting even in my own small bedroom community. They seemed convinced that their livelihoods were in imminent danger. The initiative was voted down. Basically, it would have barred most drilling within cities. Would this have cost jobs? Well, I think that the frosting on the cake would have been ever so slightly thinner.

Chemical process scale-up is a product development activity where a chemical or physical transformation is transferred from the laboratory to another location where larger equipment is used to run the operation at a larger scale. That is, the chemistry advances to bigger pots and pans, commonly of metal construction and with non-scientists running the process. A common sequence of development for a fine chemical batch operation in a suitably equipped organization might go as follows: Lab, kilo lab, pilot plant, production scale. This is an idealized sequence that depends on the product and value.

Scale-up is where an optimized and validated chemical experimental procedure is taken out of the hands of R&D chemists and placed in the care of people who may adapt it to the specialized needs of large scale processing. There the scale-up folks may scale it up unchanged or more likely apply numerous tweaks to increase the space yield (kg product per liter of reaction mass), minimize the process time, minimize side products, and assure that the process will produce product on spec the first time with a maximum profit margin.

The path to full-scale processing depends on management policy as well. A highly risk-averse organization may make many runs at modest scale to assure quality and yield. Other organizations may allow the jump from lab bench to 50, 200, or more gallons, depending on safety and economic risk.

Process scale-up outside of the pharmaceutical industry is not a very standardized activity that is seamlessly transferable from one organization to another. Unit operations like heating, distillation, filtration, etc., are substantially the same everywhere. What differs is administration of this activity and the details of construction. Organizations have unique training programs, SOP’s, work instructions, and configurations of the physical plant. Even dead common equipment like a jacketed reactor will be plumbed into the plant and supplied with unique process controls, safety systems and heating/cooling capacity. A key element of scale-up is adjusting the process conditions to fit the constraints of the production equipment. Another element is to run just a few batches at full scale rather than many smaller scale reactions. Generally it costs only slightly more in manpower to run one large batch than a smaller batch, but will give a smaller cost per kilogram.

Every organization has a unique collection of equipment, utilities, product and process history, permits, market presence, and most critically, people. An organization is limited in a significant way by the abilities and experiences of the staff who can use the process equipment in a safe and profitable manner. Rest assured that every chemist, every R&D group, and every plant manager will have a bag of tricks they will turn to first to tackle a problem. Particular reagents, reaction parameters, solvents, or handling and analytical techniques will find favor for any group of workers. Some are fine examples of professional practice and are usually protected under trade secrecy. Other techniques may reveal themselves to be anecdotal and unfounded in reality. “It’s the way we’ve always done it” is a confounding attitude that may take firm hold of an organization. Be wary of anecdotal information. Define metrics and collect data.

Chemical plants perform particular chemical transformations or handle certain materials as the result of a business decision. A multi-purpose plant will have an equipment list that includes pots and pans of a variety of functions and sizes and be of general utility. The narrower the product list, the narrower the need for diverse equipment. A plant dedicated to just one or a few products will have a bare minimum of the most cost effective equipment for the process.

Scale-up is a challenging and very interesting activity that chemistry students rarely hear about in college. And there is little reason they should. While there is usually room in graduation requirements with the ACS standardized chemistry curriculum, industrial expertise among chemistry faculty is rare. A student’s academic years in chemistry are about the fundamentals of the 5 domains of the chemical sciences: Physical, inorganic, organic, analytical, and biochemistry. A chemistry degree is a credential stating that the holder is broadly educated in the field and is hopefully qualified to hold an entry level position in an organization. A business minor would be a good thing.

The business of running reactions at a larger scale puts the chemist in contact with the engineering profession and with the chemical supply chain universe. Scale-up activity involves the execution of reaction chemistry in larger scale equipment, greater energy inputs/outputs, and the application of engineering expertise. Working with chemical engineers is a fascinating experience. Pay close attention to them.

Who do you call if you want 5 kg or 5 metric tons of a starting material? Companies will have supply chain managers who will search for the chemicals with the specifications you define. Scale-up chemists may be involved in sourcing to some extent. Foremost, raw material specifications must be nailed down. Helpful would be some idea of the sensitivity of a process to impurities in the raw material. You can’t just wave your hand and specify 99.9 % purity. Wouldn’t that be nice. There is such a thing as excess purity and you’ll pay a premium for it. For the best price you have to determine what is the lowest purity that is tolerable. If it is only solvent residue, that may be simpler. But if there are side products or other contaminants you must decide whether or not they will be carried along in your process. Once you pick a supplier, you may be stuck with them for a very long time.

Finally, remember that the most important reaction in all of chemistry is the one where you turn chemicals into money. That is always the imperative.

We have a brand new Mettler-Toledo ReactIR 15 sitting in my lab. It is rather simple to use- just dip the probe in your reaction mixture. It needs a little LN2 to chill the detector. The software is reasonable, bearing some resemblance to iControl of the RC1 sitting a few meters away.

The instrument is used to follow the progress of a reaction by monitoring the growth or extinction of IR absorptions. What is interesting for the user is that it is not necessary to identify any of the peaks in the course of an experiment. The software can integrate absorptions and plot their change over time. The fingerprint region of the IR spectrum is put to good use in that it is a fruitful region for numerous absorptions to appear.

The thing is still new to us, so we’re early in the learning curve. The probe in use has a wave number range from 2500 to  about 650 reciprocal centimeters. It is possible to detect up to 3000 wave numbers with a different probe. The probe is connected to the interferometer by a fibre optic cable comprised of a silver bromide optical pathway.

The thing is the size of a coffee maker and costs as much as a used helicopter. The ATR probe tip is small enough to be immersed in experiments at the scale of a scintillation vial or a 5 liter flask.

What it brings to the table is the ability to follow the progress of reactions in real time for process optimization. Pulling samples and trudging over to the NMR for in-process checks is tiresome and time consuming.

One limitation is the electrical classification. As with other electrical devices you have pay attention to the NFPA classification of the space it sits in. The ReactIR 15 is class 1, but not division 1. If the instrument must be used in this space, there are ways to fashion an enclosure to get around this, according to Mettler. Have a look at your computer as well. If your computer throws sparks and coal cinders, you may want to keep it away from that pool of pet ether on the floor.

With uptick of natural gas exploration and “recovery” happening, you have to wonder if anyone is bothering to look for helium in it? And I’m referring to the Marcellus shale formation in particular.  Wouldn’t it be nice for some forethought here and try to recover some of the helium that may be lost.  Helium is a non-renewable resource and is critical to many industrial sectors, including superconductor applications.

The US has held helium in reserve since 1925. Helium extraction has been most fruitful from gas wells in the western states. The Helium Privatization Act of 1996 has resulted in the release of the helium reserve to the private sector at a federally mandated price. The FY2011 price is$75.00 per thousand cubic feet.  

According to the BLM, the agency that manages the strategic reserve, their enrichment facility in Amarillo, TX, can produce 6 million cu ft per day of crude helium at ca 80 % purity. The Amarillo plant provides crude He to refiners who polish it to the necessary level of purity for the end user.

Th’ Gaussling was interested to read the August 30, 2010 issue of C&EN regarding the market situation with the rare earth elements. Or, at least certain rare earth elements (REE). The staff at C&EN has finally picked this matter up on their radar. Significant ore bodies are located in countries prone to reflexive autocracy, i.e., Russia and China.

More sgnificantly, as a friend and colleague recently pointed out, China has decided to exercise its Lanthanide fist in by slapping an embargo on rare earth materials available to much of the global market. The affected technologies include those using neodymium (or rare earth) magnets for power generation or motors. Rare earths are used in optics, ceramics, fuel cell membranes, and catalysts as well. It’s a pretty big deal for the rest of us. Lots of American R&D resources have gone into this technology.

This is the political chemistry of the REE’s. China is doing what China does- exercising national industrial policy through an emphasis on development of its natural resources. The USA, with its deep preference for free markets, is doing what it has done the last few decades- waking up surprised after a night of riotously drunken merrymaking in the marketplace. That is, responding to shortages well after the momentum has begun.

While US technologists were busy inventing things with REE’s, China was busy anticipating the upcoming demand for its REE’s. Why? Because raw mat sourcing is what R&D people do afterwards. They develop a widget and then ask how they will source the thing. Just natural. 

While the US was busy shutting down mining operations in the last decades of the 20th century, China has been systematically developing its resources.  China has an abundance of journals and workers devoted to REE technology.  The big corporate mind set in the US recoiled from investment in mineral wealth at home. A great many of the mining operations in the US are operated by Australians, Canadians, and South Africans. Somehow they are not afraid to extract minerals here, but the sons and daughters of the pioneers seem to be shy about it.

China seems more focused on developing its industrial base rather than its consumer base.  While there are some industrial policy lessons for the west here, the fact is that China is as China does.  We should not be surprised at this behavior.

The signals of a tougher Chinese trade stance come after American trade officials announced on Friday that they would investigate whether China was violating World Trade Organization rules by subsidizing its clean energy exports and limiting clean energy imports. The inquiry includes whether China’s steady reductions in rare earth export quotas since 2005, along with steep export taxes on rare earths, are illegal attempts to force multinational companies to produce more of their high-technology goods in China.

Despite a widely confirmed suspension of rare earth shipments from China to Japan, now nearly a month old, Beijing has continued to deny that any embargo exists.

Industry executives and analysts have interpreted that official denial as a way to wield an undeclared trade weapon without creating a policy trail that could make it easier for other countries to bring a case against China at the World Trade Organization. [Keith Bradsher, 10/19/10, NYT. Italics by Th’ Gaussling]

It’s not all doom and gloom. Molycorp has announced an IPO to raise funds for expansion and modernization of its Mountain Pass REE mine.  The geology of this ore body is described at this Cal Poly link.  One of the issues complicating the extraction of ore from this massive igneous and metamorphic carbonatite complex is the proximity to the Mojave National Preserve.

REE’s in geological context

In the cosmochemical bingo of hadean Earth, the landmass that we now refer to as Asia filled in the abundance bingo card with the rare earth group of elements. The combination of plate tectonics, crystalline partitioning of cooling magma, and erosion have lead to surface occurrences of rock rich in REE’s.   This group of metals is commonly defined so as to include Sc, Y, and the lanthanide metals. Others will include the actinides. All have a valency of  +3 in their natural compositions. A few of the lanthanides can attain +2 (Eu) or +4 (Ce, Pr) oxidation states, but these are unusual.  Sometimes scandium is left of the list. In other instances, both scandium and yttrium are left off the list.

A graph of lanthanide element abundance vs atomic number will show a saw tooth curve where the even atomic numbers will be represented with greater abundance. This phenomenon isn’t limited to the stretch of lanthanides and is referred to as the Oddo-Harkins rule.  One reference translated from Russian lists it as the Oddo-Kharkins rule (Ryabchikov, Ed., Rare Earth Elements, Extraction, Analysis, Applications; 1959, Academy of Sciences, USSR; Chapter by V.I. Gerasimovskii, Geochemistry of the Rare Earth Elements, p. 27).

It is not uncommon for REE’s to occur as a group in the same mineral, though Sc is often absent.  I’m aware of at least one mineral occurrence of Sc that is impoverished in lanthanides.  Among odd-numbered REE’s, Eu is especially low in abundance.

Within the REE group, two subgroups are often defined: the cerium subgroup (La, Ce, Pr, Nd, Pm, Sm, and Eu); and the yttrium subgroup (Gd, Tb, Dy, Ho, Er, Tm, Yb, Ln, and Y).

The REE’s show some interesting attributes. According to the Goldschmidt classification, the REE’s are lithophiles, literally “silicate loving”. More to the point, lithophiles are oxygen loving. The REE’s are known to form refractory oxides.  REE’s are commonly associated with pegmatites and, according to Gerasimovskii,  have a genetic connection with granites and nepheline syenites.

See the later post on the illuminating history of rare earth elements.

This morning I found out what a “lipid raft” is. All of these years I’ve been in the dark about order and disorder in cell membranes. I didn’t learn about this through any sort of noble quest; I was merely curious about a movie.

Molecular Movies is a website containing links to a marvelous set of animations about cells and molecules. I enthusiastically recommend that the reader visit this site. The movie mentioning lipid rafts is in “The Inner Life of the Cell“.

Pity Larimer County in northern Colorado. We poor sods who live here find ourselves sandwiched between two unexploited deposits of natural mineral wealth. To the east of Fort Collins, near the hamlet of Nunn, is a fairly large uranium ore body. In the northwest, there may be an exploitable diamond deposit. Perhaps hundreds of Kimberlite pipes may be lying in the CO/WY region waiting to be exploited.

Diamonds have already been mined in northern Colorado, near the Wyoming border. The Kelsey Lake diamond mine closed in 2002 due to bankruptcy. The Kelsy Lake mine produced the 5th largest diamond ever found. The yield of the formation is reportedly 4 carats per 100 metric tons of ore.

Given that the Colorado Front Range has been substantially gentrified, the discovery of mineral wealth in the vicinity of hobby ranchers and McMansions will make for some interesting times for the county commissioners. Uranium and Diamonds. NIMBY.

Stealers Wheel Video 1972.

Archives

Blog Stats

  • 571,337 hits

Archives

Blog Stats

  • 571,337 hits